-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathrun_FADACS.py
72 lines (64 loc) · 1.71 KB
/
run_FADACS.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
# @Time : Jul. 10, 2020 19:45
# @Author : Zhen Zhang
# @Email : [email protected]
# @FileName : run_FADACS.py
# @Version : 1.0
# @IDE : VSCode
import keras
import Trier as trier
import os
exp = trier.Experiment()
exp.loadConfig("./experiments/FADACS/exp.json")
#exp.prepareTTDatasets()
#exp.loadConfig("./eptest/median-melb-50/exp.json")
# exp.add({
# "model": "LSTM",
# "location": "Mornington",
# "trainWithParkingData":False,
# "parameters": {
# }
# })
# exp.add({
# "model": "convLSTM",
# "location": "Mornington",
# "trainWithParkingData":False,
# "parameters": {
# }
# })
# exp.add({
# "model": "ARIMA",
# "location": "Mornington",
# "testStart":"02/06/2017",
# "testEnd":"02/07/2017"
# })
# exp.add({
# "model": "ARIMA",
# "location": "Mornington",
# "testStart":"02/06/2020",
# "testEnd":"02/07/2020"
# })
# exp.add({
# "model": "ADDA",
# "source": "MelbCity",
# "target": "Mornington",
# "trainWithParkingData":False,
# "parameters": {
# "encoder": "MLP",
# "batchSize": 10000,
# "num_epochs": 100,
# "num_epochs_pre": 100,
# "d_learning_rate": 1e-05,
# "c_learning_rate": 1e-05,
# "e_input_dims": 96,
# "e_hidden_dims": 48,
# "e_output_dims": 24,
# "r_input_dims": 24,
# "d_input_dims": 24,
# "d_hidden_dims": 12
# }
# })
#exp.run("f0cd689a-b92a-11ea-a733-8307e46c3f58")
#exp.run("d742a6b4-bb79-11ea-8ba9-0242ac110002")
#exp.run("7f5c7a1e-b92c-11ea-aabc-1b1a91e842ya")
#exp.run("7f5c7a1e-b92c-11ea-aabc-1b1a91e842wa")
exp.run()