-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathDiverseNTN.py
275 lines (242 loc) · 10.9 KB
/
DiverseNTN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
"""
Created on 2015-7-21
class: DiverseNTN
@author: XiaLong
@contact: [email protected]
"""
# !/usr/bin/python
# -*- coding:utf-8 -*-
import yaml
import os
import sys
import string
from numpy import *
import Util
class DiverseNTN(object):
"""docstring for DiverseNTN"""
def __init__(self, trainFile, testFile, idealFile, confFile):
super(DiverseNTN, self).__init__()
self.trainFile = trainFile
self.testFile = testFile
self.idealFile = idealFile
self.confFile = confFile
self.selectedSet = []
self.selectedMatrix = array([])
def __del__(self):
self.confFile.close()
def InitConfFile(self):
self.confFile = open(self.confFile)
self.dictConf = yaml.load(self.confFile)
def InitParameter(self):
self.w_r = random.random((6))
self.l_d = self.dictConf['tensor']
self.w_u = random.random((self.l_d))
self.w_d = random.random((6,6,self.l_d))
self.learningRate = self.dictConf['learning_rate']
self.convergence = self.dictConf['convergence']
self.trainList = [{} for i in xrange(self.dictConf['query'])]
self.testList = [{} for i in xrange(self.dictConf['query'])]
self.idealRanking = [[] for i in xrange(self.dictConf['query'])]
self.sumLoss = 0.0
def InitSGD(self):
self.w_r_change = zeros((6))
self.w_u_change = zeros((self.l_d))
self.w_d_change = zeros((6,6,self.l_d))
def InitSelected(self):
self.selectedSet = []
self.selectedMatrix = array([])
def MiniSelect(self, inputArray):
return inputArray.min()
def AverSelect(self, inputMatrix):
return inputMatrix.sum()/inputMatrix.size
def MaxiSelect(self, inputMatrix):
return inputMatrix.max()
def RankingFunction(self, i, doc):
relevanceScore = dot(self.w_r, self.trainList[i][doc])
self.selectedSet.append(doc)
if len(self.selectedSet) == 1:
self.selectedMatrix = append(self.selectedMatrix, self.trainList[i][doc])
return relevanceScore
elif len(self.selectedSet) == 2:
self.selectedMatrix = array([self.selectedMatrix, self.trainList[i][doc]])
else:
self.selectedMatrix = append(self.selectedMatrix, [self.trainList[i][doc]], axis=0)
tensorScore = dot(self.w_u, self.CalculateTensor(i, self.trainList[i][doc]))
return relevanceScore+tensorScore
def RankingScore(self, i, doc):
relevanceScore = dot(self.w_r, self.testList[i][doc])
if len(self.selectedSet) == 0:
return relevanceScore
tensorScore = dot(self.w_u, self.CalculateTensor(i, self.testList[i][doc]))
return relevanceScore + tensorScore
def RelevanceFeature(self, inputFile, inputList):
featureFile = open(inputFile)
for line in featureFile.readlines():
listItem = line.split(" ")
queryID = Util.strLatter(listItem[1], ":")
queryID = string.atoi(queryID)
docID = Util.strLatter(listItem[-1], "=")
docID = docID.strip()
docID = "clueweb09-en" + docID[0:4] + "-" + docID[4:6] + "-" + docID[6:]
listFeature = []
for i in range(2, 8):
strFeature = Util.strLatter(listItem[i], ":")
floatFeature = string.atof(strFeature)
listFeature.append(floatFeature)
inputList[queryID-1][docID] = listFeature
for i in xrange(self.dictConf['query']):
if len(inputList[i]) == 0:
continue
sum = 0.0
for j in xrange(6):
for k in inputList[i].keys():
sum += inputList[i][k][j]
for k in inputList[i].keys():
inputList[i][k][j] = inputList[i][k][j]/sum
featureFile.close()
def IdealRanking(self):
self.idealFile = open(self.idealFile)
for line in self.idealFile.readlines():
if line.find('clueweb') != -1:
listItem = line.split("\t")
self.idealRanking[int(listItem[0])-1].append(listItem[1])
self.idealFile.close()
def InitDoc(self, inputList):
for i in xrange(self.dictConf['query']):
if len(inputList[i]) != 0:
self.idealRanking[i] = [doc for doc in self.idealRanking[i] if doc in inputList[i]]
def CalculateTensor(self, i, doc):
tensorArray = array([], dtype=float)
for j in xrange(self.l_d):
transposeMatrix = self.selectedMatrix.transpose()
frontScore = dot(doc, self.w_d[...,j])
behindScore = dot(frontScore, transposeMatrix)
tensorScore = self.MiniSelect(behindScore)
tensorArray = append(tensorArray, ((math.exp(tensorScore)-math.exp(-tensorScore))/(math.exp(tensorScore)+math.exp(-tensorScore))))
return tensorArray
def CalculateLoss(self, i):
queryLoss = 0.0
sumScore = 0.0
for doc in self.idealRanking[i]:
finalScore = math.exp(self.RankingFunction(i, doc))
sumScore += finalScore
queryLoss -= math.log(finalScore/sumScore)
self.InitSelected()
return queryLoss
def SGD(self, i):
sumScore = 0.0
changeScore = 0.0
w_r_change = zeros((6))
w_u_change = zeros((self.l_d))
w_d_change = zeros((6,6,self.l_d))
for doc in self.idealRanking[i]:
docScore = math.exp(self.RankingFunction(i, doc))
sumScore += docScore
w_r_change = self.SGD_w_r(i, doc, docScore, sumScore, w_r_change)
w_u_change = self.SGD_w_u(i, doc, docScore, sumScore, w_u_change)
w_d_change = self.SGD_w_d(i, doc, docScore, sumScore, w_d_change)
self.w_r -= self.learningRate * self.w_r_change
self.w_u -= self.learningRate * self.w_u_change
self.w_d -= self.learningRate * self.w_d_change
self.InitSGD()
self.InitSelected()
def SGD_w_r(self, i, doc, docScore, sumScore, change):
deltaScore = array(self.trainList[i][doc])
change += docScore * deltaScore
self.w_r_change += change/sumScore - deltaScore
return change
def SGD_w_u(self, i, doc, docScore, sumScore, change):
deltaScore = self.CalculateTensor(i, self.trainList[i][doc])
change += docScore * deltaScore
self.w_u_change += change/sumScore - deltaScore
return change
def SGD_w_d(self, i, doc, docScore, sumScore, change):
deltaScore = zeros((6,6,self.l_d))
for l in xrange(6):
for m in xrange(6):
for n in xrange(self.l_d):
transposeMatrix = self.selectedMatrix.transpose()
frontScore = dot(self.trainList[i][doc], self.w_d[...,n])
behindScore = dot(frontScore, transposeMatrix)
tensorScore = self.MiniSelect(behindScore)
e_S_change = array([], dtype=float)
if self.selectedMatrix.size == 0:
deltaScore[l][m][n] = 0.0
continue
if self.selectedMatrix.size == 6:
e_S_change = append(e_S_change, self.trainList[i][doc][l] * self.selectedMatrix[m])
deltaScore[l][m][n] = self.w_u[n] * 4 / (math.exp(tensorScore) + math.exp(-tensorScore)) *e_S_change[0]
continue
for j in xrange(self.selectedMatrix[...,0].size):
e_S_change = append(e_S_change, self.trainList[i][doc][l] * self.selectedMatrix[j][m])
deltaScore[l][m][n] = self.w_u[n] * 4 / (math.exp(tensorScore) + math.exp(-tensorScore)) *self.MiniSelect(e_S_change)
change += docScore * deltaScore
self.w_d_change += change/sumScore - deltaScore
return change
def TrainNTN(self):
self.RelevanceFeature(self.trainFile, self.trainList)
self.IdealRanking()
self.InitDoc(self.trainList)
lossFile = open("loss.txt", "w")
n=1
while True:
for i in xrange(self.dictConf['query']):
if len(self.trainList[i]) != 0:
self.SGD(i)
self.sumLoss = 0.0
for i in xrange(self.dictConf['query']):
if len(self.trainList[i]) != 0:
self.sumLoss += self.CalculateLoss(i)
print 'Sum Loss:' + str(self.sumLoss)
lossFile.write(str(self.sumLoss))
lossFile.write("\n")
lossFile.flush()
self.TestNTN(n)
n+=1
def TestNTN(self, n):
if not os.path.exists('result'):
os.makedirs('result')
self.RelevanceFeature(self.testFile, self.testList)
resultFile = open("result/result"+str(n)+".txt", "w")
for i in xrange(self.dictConf['query']):
if len(self.testList[i]) != 0:
bestResult = 101
rank = 1
while len(self.testList[i].keys()) != 0:
bestScore = -10000.0
bestDoc = ""
for key in self.testList[i].keys():
rankingScore = self.RankingScore(i, key)
if rankingScore > bestScore:
bestScore = rankingScore
bestDoc = key
self.selectedSet.append(bestDoc)
if len(self.selectedSet) == 1:
self.selectedMatrix = append(self.selectedMatrix, self.testList[i][bestDoc])
elif len(self.selectedSet) == 2:
self.selectedMatrix = array([self.selectedMatrix, self.testList[i][bestDoc]])
else:
self.selectedMatrix = append(self.selectedMatrix, [self.testList[i][bestDoc]], axis=0)
resultFile.write(str(i+1) + " Q0 " + str(bestDoc) + " " + str(rank) + " " + str(bestResult) + " xialong" + "\n")
self.testList[i].pop(bestDoc)
bestResult -= 1
rank += 1
self.InitSelected()
pass
def Main(self):
self.InitConfFile()
self.InitParameter()
self.InitSGD()
self.InitSelected()
self.TrainNTN()
def main():
pass
if __name__ == '__main__':
if len(sys.argv) != 5:
print "Error: params number is 4!"
print "Need: train relevance feature file, test relevance feature file, ideal ranking file, and configure file!"
sys.exit(-1)
carpe_diem = DiverseNTN(sys.argv[1], sys.argv[2], sys.argv[3], sys.argv[4])
carpe_diem.Main()
del carpe_diem
print "Game over!"