-
Notifications
You must be signed in to change notification settings - Fork 33
/
snRNA_processing.R
220 lines (199 loc) · 9.21 KB
/
snRNA_processing.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
library(dplyr)
library(Seurat)
library(ggplot2)
library(liger)
library(Matrix)
################################################################################
# Step 01: Load 10X aggregated peaks by cells matrix into seurat
################################################################################
NucSeq.data <- Read10X(data.dir = "cellranger_aggr_dir/outs/filtered_feature_bc_matrix")
NucSeq <- CreateSeuratObject(
counts = NucSeq.data,
min.cells = 3,
min.features = 200
)
# add sample level metadata (Diagnosis, Age, Sex, etc)
my.data <- read.table(file = "/dfs3/swaruplab/smorabit/analysis/AD_NucSeq_2019/data/CellSampleID.tsv", header=TRUE, stringsAsFactors=FALSE)
rownames(my.data) <- my.data$Barcode10X_Orig
my.data <- my.data[rownames(my.data) %in% colnames(NucSeq),]
NucSeq <- AddMetaData(NucSeq, metadata=my.data)
NucSeq$BRcode_sample <- paste0(do.call('rbind', strsplit(NucSeq$Barcode10X_Orig, "-"))[,1], "-", do.call("rbind", strsplit(as.character(NucSeq$Sample.ID), "-"))[,2])
################################################################################
# Step 02: Quality Control
################################################################################
NucSeq[["percent.mt"]] <- PercentageFeatureSet(object = NucSeq, pattern = "^MT-")
NucSeq <- subset(x = NucSeq, subset = nFeature_RNA > 200 & nFeature_RNA < 10000 & percent.mt < 10)
NucSeq <- NucSeq[!grepl("^MT-", rownames(NucSeq)),]
################################################################################
# Step 03: integrative Non-negative Matrix Factorization (iNMF)
################################################################################
SeuratList <- list(
b1 = GetAssayData(subset(NucSeq, Batch == 1), slot="counts"),
b2 = GetAssayData(subset(NucSeq, Batch == 2), slot="counts"),
b3 = GetAssayData(subset(NucSeq, Batch == 3), slot="counts")
)
a.NucSeq <- createLiger(SeuratList)
a.NucSeq <- normalize(a.NucSeq)
a.NucSeq <- selectGenes(a.NucSeq, var.thresh =0.4, do.plot=T)
a.NucSeq <- scaleNotCenter(a.NucSeq)
a.NucSeq <- optimizeALS(a.NucSeq, k=30)
a.NucSeq <- quantileAlignSNF(a.NucSeq, resolution = 1.0, small.clust.thresh = 20)
MergeSparseDataAll <- function(datalist, library.names = NULL) {
col_offset <- 0
allGenes <- unique(unlist(lapply(datalist, rownames)))
allCells <- c()
for (i in 1:length(datalist)) {
curr <- datalist[[i]]
curr_s <- summary(curr)
curr_s[, 2] <- curr_s[, 2] + col_offset
if (!is.null(library.names)) {
cellnames <- paste0(library.names[i], "_", colnames(curr))
} else {
cellnames <- colnames(curr)
}
allCells <- c(allCells, cellnames)
idx <- match(rownames(curr), allGenes)
newgenescurr <- idx[curr_s[, 1]]
curr_s[, 1] <- newgenescurr
if (!exists("full_mat")) {
full_mat <- curr_s
} else {
full_mat <- rbind(full_mat, curr_s)
}
col_offset <- length(allCells)
}
M <- sparseMatrix(
i = full_mat[, 1],
j = full_mat[, 2],
x = full_mat[, 3],
dims = c(
length(allGenes),
length(allCells)
),
dimnames = list(
allGenes,
allCells
)
)
return(M)
}
customLigerToSeurat <- function(liger_object){
raw.data <- MergeSparseDataAll([email protected], names(liger_object@H))
scale.data <- do.call(rbind, [email protected])
rownames(scale.data) <- colnames(raw.data)
var.genes <- [email protected]
var.genes <- gsub("_", replacement = "-", var.genes)
# inmf.obj <- new(Class = "DimReduc", feature.loadings = t(liger_object@W),
# cell.embeddings = [email protected], key = "iNMF_")
inmf.obj <- CreateDimReducObject(
loadings=t(liger_object@W),
key="iNMF_",
assay="RNA"
)
rownames([email protected]) <- var.genes
rownames([email protected]) <- rownames(scale.data)
new.seurat <- CreateSeuratObject(raw.data)
new.seurat@[email protected] <- var.genes
new.seurat <- SetAssayData(new.seurat, slot = "scale.data",
t(scale.data), assay = "RNA")
new.seurat@reductions$inmf <- inmf.obj
return(new.seurat)
}
NucSeq <- customLigerToSeurat(a.NucSeq)
my.data <- read.table(file = "data/CellSampleID.tsv", header=TRUE, stringsAsFactors=F)
for(meta in names(my.data)){
print(meta)
[email protected][[meta]] <- my.data[[meta]]
}
################################################################################
# Step 04: Primary Processing
################################################################################
NucSeq <- NormalizeData(NucSeq)
NucSeq <- ScaleData(NucSeq, features=rownames(NucSeq))
NucSeq <- RunPCA(NucSeq, dims=1:100)
NucSeq <- RunUMAP(NucSeq, reduction = "inmf", dims = 1:dim(NucSeq[["inmf"]])[2])
NucSeq <- RunTSNE(NucSeq, reduction = "inmf", dims = 1:dim(NucSeq[["inmf"]])[2])
NucSeq <- FindNeighbors(NucSeq, reduction = "inmf", dims = 1:dim(NucSeq[["inmf"]])[2], nn.eps=0.5)
NucSeq <- FindClusters(NucSeq, resolution = 0.90, n.start=10)
################################################################################
# Step 05: Re-processing Mathys et al. 2019
################################################################################
rosmap_metadata <- read.csv(file='data/ROSMAP_Clinical_2019-05_v3.csv')
tsai_metadata <- read.csv('data/TsaiMetadata.txt', sep='\t')
mathys_metadata <- read.csv('data/metaData.Tsai.merged_Final.csv', sep=',', stringsAsFactors=F)
intersect(tsai_metadata$projid, rosmap_metadata$projid)
load('data/NucSeq.Tsai.Scaled.rda')
for(meta in names(tsai_metadata)){
NucSeq.Tsai[[meta]] <- tsai_metadata[[meta]]
}
Idents(NucSeq.Tsai) <- NucSeq.Tsai$Subcluster
for(meta in names(select(rosmap_metadata, -c(projid)))){
NucSeq.Tsai[[meta]] <- rosmap_metadata[[meta]][match(NucSeq.Tsai$projid, rosmap_metadata$projid)]
}
NucSeq.Tsai$pathology.group <- mathys_metadata$pathology.group
NucSeq.Tsai$Diagnosis <- ifelse(NucSeq.Tsai$ceradsc %in% c(1,2), 'AD', 'Control')
NucSeq.Tsai <- NormalizeData(NucSeq.Tsai)
NucSeq.Tsai <- FindVariableFeatures(NucSeq.Tsai, nfeatures=4500)
NucSeq.Tsai <- ScaleData(NucSeq.Tsai, features=VariableFeatures(NucSeq.Tsai))
NucSeq.Tsai <- RunPCA(NucSeq.Tsai, features=VariableFeatures(NucSeq.Tsai), dims=1:100)
NucSeq.Tsai <- RunUMAP(NucSeq.Tsai, reduction = "pca", dims = 1:30)
################################################################################
# Step 06: Joint analysis of Mathys et al & UCI snRNA-seq data
################################################################################
SeuratList <- list(
uci = GetAssayData(NucSeq, slot="counts"),
mathys = GetAssayData(NucSeq.Tsai, slot="counts")
)
a.NucSeq <- createLiger(SeuratList)
a.NucSeq <- normalize(a.NucSeq)
a.NucSeq <- optimizeALS(a.NucSeq, k=30)
a.NucSeq <- quantileAlignSNF(a.NucSeq, resolution = 1.0, small.clust.thresh = 20)
NucSeq.joint <- customLigerToSeurat(a.NucSeq)
NucSeq.joint <- RenameCells(NucSeq.joint, new.names=do.call('rbind', strsplit(colnames(NucSeq.joint), "_"))[,2])
temp <- do.call('rbind', strsplit(colnames(NucSeq.joint), "-"))
NucSeq.joint$dataset <- temp[,1]
NucSeq.joint$barcode <- paste0(temp[,2], '-', temp[,3])
NucSeq.joint <- NormalizeData(NucSeq.joint)
NucSeq.joint <- ScaleData(NucSeq.joint, features=VariableFeatures(NucSeq.joint))
NucSeq.joint <- RunUMAP(NucSeq.joint, reduction = "inmf", dims = 1:dim(NucSeq.joint[["inmf"]])[2])
################################################################################
# Step 07: metacell aggregation
################################################################################
library(cicero)
seurat_list <- list()
k = 50
celltypes <- unique(NucSeq.joint$Cell.Type)
celltypes <- celltypes[celltypes != 'PER.END']
for(cur_celltype in celltypes){
condition_list <- list()
for(condition in unique(NucSeq.joint$Diagnosis)){
print(paste(cur_celltype, condition))
cur_seurat <- subset(NucSeq.joint, Cell.Type == cur_celltype & Diagnosis == condition)
expr_matrix <- GetAssayData(cur_seurat, slot='data')
genes <- data.frame(as.character(rownames(expr_matrix)))
rownames(genes) <- rownames(expr_matrix)
genes <- as.data.frame(cbind(genes,genes))
colnames(genes) <- c("GeneSymbol", "gene_short_name")
cds <- new_cell_data_set(
expr_matrix,
gene_metadata=genes
)
cds@reducedDims[['UMAP']] <- cur_seurat@[email protected]
umap_coords <- reducedDims(cds)$UMAP
metacell_cds <- make_cicero_cds(cds, reduced_coordinates=umap_coords, k=k, size_factor_normalize=FALSE)
metacell_seurat <- CreateSeuratObject(
counts = exprs(metacell_cds) / k
metacell_seurat$Cell.Type <- cur_celltype
metacell_seurat$Diagnosis <- condition
metacell_seurat <- RenameCells(metacell_seurat, new.names=paste0(cur_celltype, '_', condition, '_', seq(1:ncol(metacell_seurat))))
condition_list[[condition]] <- metacell_seurat
}
seurat_list[[cur_celltype]] <- merge(condition_list[[1]], y=condition_list[2:length(condition_list)])
}
metacell_seurat <- merge(x=seurat_list[[1]], y=seurat_list[2:length(seurat_list)])
metacell_seurat <- FindVariableFeatures(metacell_seurat, nfeatures=3000)
metacell_seurat <- ScaleData(metacell_seurat, features = VariableFeatures(metacell_seurat))
metacell_seurat <- RunPCA(metacell_seurat, features=VariableFeatures(metacell_seurat))
metacell_seurat <- RunUMAP(metacell_seurat, reduction='pca', dims=1:25)