-
Notifications
You must be signed in to change notification settings - Fork 33
/
snRNA_Mathys2019_integration.R
126 lines (97 loc) · 5.18 KB
/
snRNA_Mathys2019_integration.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
library(tidyverse)
library(Seurat)
library(cowplot)
theme_use(theme_cowplot())
NucSeq <- readRDS(file="/dfs7/dfs3/swaruplab/smorabit/analysis/cross-disorder/data/seurat_objects/swarup_AD_2019_unprocessed.rds")
rosmap_metadata <- read.csv(file='/dfs3/swaruplab/smorabit/analysis/AD_NucSeq_2019/batch_correction/liger/update/joint_analysis/data/ROSMAP_Clinical_2019-05_v3.csv')
tsai_metadata <- read.csv('/dfs3/swaruplab/smorabit/analysis/AD_NucSeq_2019/batch_correction/liger/update/joint_analysis/data/TsaiMetadata.txt', sep='\t')
intersect(tsai_metadata$projid, rosmap_metadata$projid)
# load tsai seurat object:
load('~/swaruplab/vswarup/AD2019/IntegrateTsai/NucSeq.Tsai.Scaled.rda')
# add metadata to Tsai object
for(meta in names(tsai_metadata)){
NucSeq.Tsai[[meta]] <- tsai_metadata[[meta]]
}
Idents(NucSeq.Tsai) <- NucSeq.Tsai$Subcluster
for(meta in names(select(rosmap_metadata, -c(projid)))){
NucSeq.Tsai[[meta]] <- rosmap_metadata[[meta]][match(NucSeq.Tsai$projid, rosmap_metadata$projid)]
}
# make Diagnosis column based on CERAD score:
NucSeq.Tsai$Diagnosis <- ifelse(NucSeq.Tsai$ceradsc %in% c(1,2), 'AD', 'Control')
# process their data!
NucSeq.Tsai <- NormalizeData(NucSeq.Tsai)
NucSeq.Tsai <- FindVariableFeatures(NucSeq.Tsai, nfeatures=4500)
NucSeq.Tsai <- ScaleData(NucSeq.Tsai, features=VariableFeatures(NucSeq.Tsai))
NucSeq.Tsai <- RunPCA(NucSeq.Tsai, features=VariableFeatures(NucSeq.Tsai), dims=1:100)
NucSeq.Tsai <- RunUMAP(NucSeq.Tsai, reduction = "pca", dims = 1:30)
pdf('figures/tsai_umap.pdf', width=7, height=6)
DimPlot(NucSeq.Tsai, group.by='broad.cell.type')
DimPlot(NucSeq.Tsai, group.by='Diagnosis')
DimPlot(NucSeq.Tsai, group.by='individualID')
dev.off()
library(liger)
SeuratList <- list(
Swarup = GetAssayData(NucSeq, slot="counts"),
Tsai = GetAssayData(NucSeq.Tsai, slot="counts")
)
colnames(SeuratList$Swarup) <- paste0('Swarup-', colnames(SeuratList$Swarup))
colnames(SeuratList$Tsai) <- paste0('Tsai-', colnames(SeuratList$Tsai))
a.NucSeq <- createLiger(SeuratList)
# normalize, select variable genes, scale
a.NucSeq <- normalize(a.NucSeq)
pdf("../joint_analysis/figures/liger_variable_genes.pdf", width=8, height=8)
a.NucSeq <- selectGenes(a.NucSeq, var.thresh =c(0.4, 0.1), do.plot=T)
dev.off()
a.NucSeq <- scaleNotCenter(a.NucSeq)
a.NucSeq <- optimizeALS(a.NucSeq, k=30)
a.NucSeq <- quantileAlignSNF(a.NucSeq, resolution = 1.0, small.clust.thresh = 20)
save(a.NucSeq, file="../joint_analysis/data/NucSeq_joint_liger.rds")
# plot TSNE
a.NucSeq <- runTSNE(a.NucSeq, method="fftRtsne", fitsne.path="/data/users/smorabit/bin/software/FIt-SNE")
pdf("../joint_analysis/figures/liger_tsne.pdf", width=10, height=8)
plotByDatasetAndCluster(a.NucSeq, return.plots=T)
dev.off()
[email protected] <- NucSeq@[email protected]
# plot gene loadings for each factor
pdf("../joint_analysis/figures/liger_geneLoadings.pdf", width=10, height=10)
plotGeneLoadings(a.NucSeq, num.genes=50)
dev.off()
NucSeq.joint <- customLigerToSeurat(a.NucSeq)
NucSeq.joint <- RenameCells(NucSeq.joint, new.names=do.call('rbind', strsplit(colnames(NucSeq.joint), "_"))[,2])
# set up metadata ##############################################################
temp <- do.call('rbind', strsplit(colnames(NucSeq.joint), "-"))
NucSeq.joint$dataset <- temp[,1]
NucSeq.joint$barcode <- paste0(temp[,2], '-', temp[,3])
# are cells in the same order as they are in their dataset of origin?
all.equal(subset([email protected], dataset=='Swarup') %>% .$barcode, colnames(NucSeq))
all.equal(subset([email protected], dataset=='Tsai') %>% .$barcode, colnames(NucSeq.Tsai))
# take Diagnosis and cell type from dataset of origin
NucSeq.joint$Diagnosis <- c(NucSeq$Diagnosis, NucSeq.Tsai$Diagnosis)
NucSeq.joint$celltype <- c(NucSeq$Cell.Type, as.character(NucSeq.Tsai$broad.cell.type))
NucSeq.joint$SampleID <- c(NucSeq$SampleID, NucSeq.Tsai$individualID)
NucSeq.joint <- NormalizeData(NucSeq.joint)
NucSeq.joint <- ScaleData(NucSeq.joint, features=VariableFeatures(NucSeq.joint))
NucSeq.joint <- RunUMAP(NucSeq.joint, reduction = "inmf", dims = 1:dim(NucSeq.joint[["inmf"]])[2])
NucSeq.joint$UMAP_1 <- NucSeq.joint@[email protected][,1]
NucSeq.joint$UMAP_2 <- NucSeq.joint@[email protected][,2]
saveRDS(NucSeq.joint, file='../joint_analysis/data/NucSeq_joint_inmf_integration.rds')
pdf('figures/joint_umap_inmf.pdf', width=12, height=10)
DimPlot(NucSeq.joint, group.by='dataset')
DimPlot(NucSeq.joint, group.by='Diagnosis')
DimPlot(NucSeq.joint, group.by='SampleID')
DimPlot(NucSeq.joint, group.by='celltype')
dev.off()
pdf('figures/joint_umap_inmf_split.pdf', width=12, height=5)
DimPlot(NucSeq.joint, group.by='Diagnosis', split.by='dataset')
DimPlot(NucSeq.joint, group.by='SampleID', split.by='dataset')
DimPlot(NucSeq.joint, group.by='celltype', split.by='dataset')
dev.off()
png('figures/pngs/joint_umap_inmf_dataset.png', width=6, height=5, res=500, units='in')
DimPlot(NucSeq.joint, group.by='dataset')
dev.off()
png('figures/pngs/joint_umap_inmf_celltype.png', width=6, height=5, res=500, units='in')
DimPlot(NucSeq.joint, group.by='celltype')
dev.off()
png('figures/pngs/joint_umap_inmf_split.png', width=12, height=5, res=500, units='in')
DimPlot(NucSeq.joint, group.by='celltype', split.by='dataset')
dev.off()