-
Notifications
You must be signed in to change notification settings - Fork 33
/
snATAC_TF-networks.Rmd
486 lines (366 loc) · 17.4 KB
/
snATAC_TF-networks.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
# Load Required libraries and data:
```{r eval=FALSE}
# conda activate cicero
library(Seurat)
library(Signac)
library(tidyverse)
library(ArchR)
library(future.apply)
library(ggpubr)
library(reshape2)
library(patchwork)
library(RColorBrewer)
library(Gviz)
NucSeq.atac <- readRDS(file='data/NucSeq_macs2Peaks_signac.rds')
NucSeq <- readRDS('data/NucSeq_batch_correct_seurat.rds')
# load ArchR project
proj <- loadArchRProject(path = "/dfs3b/swaruplab/smorabit/analysis/AD_NucSeq_2019/atac_analysis/all_data/ArchR3/all_samples/")
proj@peakSet$site_name <- paste0(as.character(seqnames(proj@peakSet)), '-', start(proj@peakSet), '-', end(proj@peakSet))
proj@peakSet$site_name2 <- paste0(as.character(seqnames(proj@peakSet)), ':', start(proj@peakSet), '-', end(proj@peakSet))
################################################################################
# Load ensembl db annotations
################################################################################
library(EnsDb.Hsapiens.v86)
gene.coords <- genes(EnsDb.Hsapiens.v86, filter = ~ gene_biotype == "protein_coding")
genebody.coords <- keepStandardChromosomes(gene.coords, pruning.mode = 'coarse')
genebodyandpromoter.coords <- Extend(x = gene.coords, upstream = 2000, downstream = 0)
genebodyandpromoter.coords <- genebodyandpromoter.coords %>% subset(seqnames %in% c(1:22,'Y','X'))
################################################################################
# Load gl-cCREs, DA motifs, DEGs
################################################################################
load('data/top_link_df.rda')
top_link_df$Peak2 <- sub(':', '-', as.character(top_link_df$Peak2))
umap_theme <- theme(
axis.line=element_blank(),
axis.text.x=element_blank(),
axis.text.y=element_blank(),
axis.ticks=element_blank(),
axis.title.x=element_blank(),
axis.title.y=element_blank(),
panel.background=element_blank(),
panel.border=element_blank(),
panel.grid.major=element_blank(),
panel.grid.minor=element_blank(),
plot.background=element_blank()
)
```
Set motif assay for snATAC-seq data
```{r eval=FALSE}
library(JASPAR2018)
library(TFBSTools)
library(BSgenome.Hsapiens.UCSC.hg38)
pfm <- getMatrixSet(
x = JASPAR2018,
opts = list(species = 9606, all_versions = FALSE)
)
NucSeq.atac <- AddMotifs(
object = NucSeq.atac,
genome = BSgenome.Hsapiens.UCSC.hg38,
pfm = pfm
)
```
Load DA motifs and DEGs:
```{r eval=FALSE}
motif_names <- GetMotifData(NucSeq.atac, slot='motif.names')
load('data/diagnosis_da_motifs.rda')
load('ata/da_motifs.rda')
da_motifs_celltypes$motif_name <- as.character(motif_names[da_motifs_celltypes$gene])
diagnosis_da_motifs$motif_name <- as.character(motif_names[diagnosis_da_motifs$gene])
# load DEGs
load("data/all_DEGs.rda")
# load AD GWAS credible set list:
load(file="data/gwas_snps_granges.rda")
```
Compute TF target scores
```{r eval=FALSE}
motif_names <- GetMotifData(NucSeq.atac, slot='motif.names')
################################################################################
# select celltype
################################################################################
# for ODCs only
cur_celltype <- c('ODC', 'OPC'); vln_width=12
cur_seurat_atac <- subset(NucSeq.atac, monocle_clusters_umap_Cell.Type %in% cur_celltype) # ODCs
cur_seurat_rna <- subset(NucSeq, Cell.Type %in% cur_celltype) # ODCs
# reset idents for ODCs:
Idents(cur_seurat_atac) <- factor(
as.character(cur_seurat_atac$monocle_clusters_umap_ID),
levels=c('OPC.a', 'ODC.a', 'ODC.b', 'ODC.l', 'ODC.g', 'ODC.i', 'ODC.m', 'ODC.j', 'ODC.f', 'ODC.h', 'ODC.c', 'ODC.e', 'ODC.k', 'ODC.d')
)
Idents(cur_seurat_rna) <- factor(
as.character(cur_seurat_rna$monocle_clusters_umap_ID),
levels=c('OPC1', 'OPC2', 'ODC13', 'ODC8', 'ODC12', 'ODC10', 'ODC5', 'ODC3', 'ODC7', 'ODC6', 'ODC11', 'ODC2', 'ODC9', 'ODC1', 'ODC4')
)
# subset by celltype
cur_celltype <- 'MG'; vln_width=6
cur_celltype <- 'ASC'; vln_width=6
cur_celltype <- 'EX'; vln_width=8
# subset by celltype
cur_seurat_atac <- subset(NucSeq.atac, monocle_clusters_umap_Cell.Type == cur_celltype)
cur_seurat_rna <- subset(NucSeq, Cell.Type == cur_celltype)
cur_seurat_atac <- FindTopFeatures(
cur_seurat_atac,
min.cutoff=ncol(cur_seurat_atac)*0.05 # present in what % of cells
)
cur_seurat_rna <- FindVariableFeatures(cur_seurat_rna)
################################################################################
# select TF / motif
################################################################################
# note: if there's more than 1 TF motif associated with that name (such as CTCF),
# need to specify which motif ID.
# use variable genes, or all genes?
variable_genes_only <- FALSE
# for emily Feb 2021:
cur_motif <- 'NFIC'; cur_motif_ID <- 'MA0161.2'
cur_motif <- 'STAT3'
# MG:
cur_motif <- 'SPI1'
cur_motif <- 'ETS1'
# ODC:
cur_motif <- 'SOX9'
cur_motif <- 'SOX13'
cur_motif <- 'SREBF1'
cur_motif <- 'SREBF2'; cur_motif_ID <- 'MA0828.1'
cur_motif <- 'NRF1'
# ASC:
cur_motif <- 'CTCF'; cur_motif_ID <- 'MA0139.1'
cur_motif <- 'FOSL2'; cur_motif_ID <- 'MA0478.1'
cur_motif <- 'FOSL2_JUNB'; cur_motif_ID <- 'MA1138.1'
cur_motif <- 'STAT3'
cur_motif <- 'ISX'
cur_motif <- 'SHOX'
# EX:
cur_motif <- 'REST'
cur_motif <- 'JUN'; cur_motif_ID <- 'MA0489.1'
cur_motif <- 'EGR1'
cur_motif_ID <- names(motif_names[grepl(cur_motif, motif_names)])
################################################################################
# Find promoters & genes with accessible TF binding sites
################################################################################
# get all regions with cur_motif binding site:
cur_motif_accessible <- Motifs(NucSeq.atac)@data[,cur_motif_ID]
cur_motif_accessible <- names(cur_motif_accessible)[cur_motif_accessible > 0]
# subset this list by top features
cur_motif_accessible <- cur_motif_accessible[cur_motif_accessible %in% VariableFeatures(cur_seurat_atac)]
# which of these peaks are at promoters?
cur_motif_accessible_promoters <- cur_motif_accessible[cur_motif_accessible %in% proj@peakSet$site_name[proj@peakSet$peakType == 'Promoter']]
# which genes are associated with these promoters?
cur_motif_target_genes <- proj@peakSet$nearestGene[match(cur_motif_accessible_promoters, proj@peakSet$site_name)]
# optional:
# which of these genes are highly expressed in snRNA-seq?
if(variable_genes_only){
cur_motif_target_genes <- cur_motif_target_genes[cur_motif_target_genes %in% VariableFeatures(NucSeq)] %>% as.character %>% unique %>% list
}
# remove genes that are not in the seurat obj
cur_motif_target_genes <- as.character(cur_motif_target_genes)
cur_motif_target_genes <- cur_motif_target_genes[cur_motif_target_genes %in% rownames(NucSeq)]
################################################################################
# Compute module score for these target genes
################################################################################
gene_list <- list(
cur_motif_target_genes
)
names(gene_list) <- paste0(cur_motif, '_targets')
NucSeq <- AddModuleScore(
NucSeq,
features=gene_list,
pool = rownames(NucSeq), k=F, nbin=24,
name=paste0(cur_motif, '_targets')
)
################################################################################
# plot module score feature plot:
################################################################################
# settings for featureplot
order_values <- TRUE
reduct <- 'umap'
# plot promoter target gene module score for this TF:
p <- FeaturePlot(NucSeq, features=paste0(cur_motif, '_targets1'), order=order_values, reduction=reduct, raster=800) +
scale_color_gradient2(low=scales::muted('blue'), mid='white', high=scales::muted('red')) +
theme(plot.margin = unit(c(0, 0, 0, 0), "in")) + umap_theme +
ggtitle(paste0(cur_motif, ' target score'))
pdf(paste0('figures/TF_targets/', cur_celltype, '_', cur_motif, '_targets.pdf'), width=5, height=4, useDingbats=FALSE)
p
dev.off()
# plot chromVAR deviation for this TF:
order_values <- TRUE
p <- FeaturePlot(NucSeq.atac, features=cur_motif_ID, order=order_values, reduction=reduct, raster=500) +
scale_color_gradient2(
low=rgb(32, 67, 37, maxColorValue=255), mid='white', high=rgb(58, 22, 72, maxColorValue=255)) +
theme(plot.margin = unit(c(0, 0, 0, 0), "in")) + umap_theme +
ggtitle(paste0(cur_motif, ' motif'))
pdf(paste0('figures/TF_targets/', cur_celltype, '_', cur_motif, '_deviation.pdf'), width=5, height=4, useDingbats=FALSE)
p
dev.off()
################################################################################
# cluster violin plot for target expression modules
################################################################################
plot_rna <- subset(NucSeq, Cell.Type == cur_celltype)
Idents(plot_rna) <- factor(plot_rna$monocle_clusters_umap_ID, levels=unique(plot_rna$monocle_clusters_umap_ID)[order(unique(plot_rna$monocle_clusters_umap_ID))])
plot_atac <- subset(NucSeq.atac, monocle_clusters_umap_Cell.Type == cur_celltype)
Idents(plot_atac) <- factor(plot_atac$monocle_clusters_umap_ID, unique(plot_atac$monocle_clusters_umap_ID)[order(unique(plot_atac$monocle_clusters_umap_ID))])
# ODC
# Idents(plot_atac) <- factor(
# as.character(plot_atac$monocle_clusters_umap_ID),
# levels=c('OPC.a', 'ODC.a', 'ODC.b', 'ODC.l', 'ODC.g', 'ODC.i', 'ODC.m', 'ODC.j', 'ODC.f', 'ODC.h', 'ODC.c', 'ODC.e', 'ODC.k', 'ODC.d')
# )
# Idents(plot_rna) <- factor(
# as.character(plot_rna$monocle_clusters_umap_ID),
# levels=c('OPC1', 'OPC2', 'ODC13', 'ODC8', 'ODC12', 'ODC10', 'ODC5', 'ODC3', 'ODC7', 'ODC6', 'ODC11', 'ODC2', 'ODC9', 'ODC1', 'ODC4')
# )
#
p1 <- VlnPlot(plot_rna, features=paste0(cur_motif, '_targets1'), split.by='Diagnosis', split.plot=TRUE, pt.size=0) +
stat_compare_means(method='wilcox.test', label='p.signif', label.y=0.05) +
geom_hline(yintercept = 0, linetype='dashed') +
xlab('') + ylab(paste0(cur_motif, ' targets')) + ggtitle('') +
theme(plot.margin = unit(c(0, 0, 0, 0.1), "in"), axis.title.y=element_text(face='bold')) +
NoLegend()
p2 <- VlnPlot(plot_rna, features=cur_motif, split.by='Diagnosis', split.plot=TRUE, pt.size=0) +
stat_compare_means(method='wilcox.test', label='p.signif', label.y=3) +
xlab('') + ylab(paste0(cur_motif, ' expression')) + ggtitle('') +
theme(plot.margin = unit(c(0, 0, 0, 0.1), "in"), axis.title.y=element_text(face='bold')) +
NoLegend()
p3 <- VlnPlot(plot_atac, assay='chromvar', features=cur_motif_ID, split.by='Diagnosis', split.plot=TRUE, pt.size=0) +
stat_compare_means(method='wilcox.test', label='p.signif', label.y=3) +
xlab('') + ylab(paste0(cur_motif, ' deviation')) + ggtitle('') +
theme(plot.margin = unit(c(0, 0, 0, 0.1), "in"), axis.title.y=element_text(face='bold')) +
NoLegend() + geom_hline(yintercept = 0, linetype='dashed')
pdf(paste0('figures/TF_targets/', cur_celltype, '_', cur_motif, '_targets_vln.pdf'), width=vln_width/2, height=3)
p1
p2
p3
dev.off()
```
motif logo plots:
```{r eval=FALSE}
motif_names[grepl('NFIC', motif_names)]
motif_names[grepl('NFIA', motif_names)]
pdf(paste0('figures/NFIC_motifs.pdf'), width=5, height=2, useDingbats=FALSE)
MotifPlot(
object = NucSeq.atac,
motifs = c('MA0161.2', 'MA0670.1')
)
dev.off()
```
Construct TF nets
```{r eval=FALSE}
library(igraph)
library(RColorBrewer)
# select cell type and subset
cur_celltype <- 'ASC';
cur_celltype <- 'MG';
use_variable_genes <- FALSE
# subset seurat obj
cur_seurat_atac <- subset(NucSeq.atac, monocle_clusters_umap_Cell.Type %in% cur_celltype)
cur_seurat_atac <- FindTopFeatures(
cur_seurat_atac,
min.cutoff=ncol(cur_seurat_atac)*0.05 # MG
)
# get links for this cell type
cur_link_df <- subset(top_link_df, celltype %in% cur_celltype)
cur_link_df$target_gene <- as.character(cur_link_df$Peak2_nearestGene)
# use all JASPAR2018 motifs:
motif_IDs <- names(motif_names)
# select motifs
motif_IDs <- c("MA0080.4", "MA0687.1", "MA0098.3", "MA0765.1", "MA0136.2") #MG
motif_IDs <- c("MA0826.1", "MA0595.1", "MA0506.1", "MA0077.1", "MA1120.1", "MA0596.1") # ODC
################################################################################
# loop through motifs to get connections
################################################################################
# for each motif, find genes:
motif_list <- list()
edge_df <- data.frame()
vertex_df <- data.frame()
for(cur_motif_ID in motif_IDs){
# get cur motif name
cur_motif <- as.character(motif_names[cur_motif_ID])
# get list of promoter and enhancer targets of these TFs
cur_motif_accessible <- Motifs(NucSeq.atac)@data[,cur_motif_ID]
cur_motif_accessible <- names(cur_motif_accessible)[cur_motif_accessible > 0]
cur_motif_accessible_promoters <- cur_motif_accessible[cur_motif_accessible %in% proj@peakSet$site_name[proj@peakSet$peakType == 'Promoter']]
cur_motif_target_genes <- proj@peakSet$nearestGene[match(cur_motif_accessible_promoters, proj@peakSet$site_name)]
# variable genes only?
if(use_variable_genes){
cur_motif_target_genes <- cur_motif_target_genes[cur_motif_target_genes %in% VariableFeatures(NucSeq)] %>% as.character %>% unique
} else{cur_motif_target_genes<- cur_motif_target_genes %>% as.character %>% unique}
# enhancer target genes
cur_motif_accessible_enhancers <- cur_motif_accessible[cur_motif_accessible %in% cur_link_df$Peak2]
cur_motif_enhancers_target_genes <- subset(cur_link_df, Peak2 %in% cur_motif_accessible_enhancers) %>% .$target_gene
# variable genes only?
if(use_variable_genes){
cur_motif_enhancers_target_genes <- cur_motif_enhancers_target_genes[cur_motif_enhancers_target_genes %in% VariableFeatures(NucSeq)] %>% as.character %>% unique
} else{cur_motif_enhancers_target_genes<- cur_motif_enhancers_target_genes %>% as.character %>% unique}
cur_vertex_df <- data.frame(
name = c(cur_motif ,as.character(unique(c(unlist(cur_motif_enhancers_target_genes), unlist(cur_motif_target_genes)))))
)
# check if there are promoter targets:
if(length(cur_motif_target_genes) > 0){
cur_promoter_edge_df <- data.frame(
from=cur_motif,
to=as.character(unlist(cur_motif_target_genes)),
type='promoter'
)
} else{cur_promoter_edge_df <- data.frame()}
# check if there are enhancer targets:
if(length(cur_motif_enhancers_target_genes) > 0){
cur_enhancer_edge_df <- data.frame(
from=cur_motif,
to=as.character(unlist(cur_motif_enhancers_target_genes)),
type='enhancer'
)
} else{cur_enhancer_edge_df <- data.frame()}
#cur_edge_df <- rbind(cur_promoter_edge_df, cur_enhancer_edge_df, cur_repressors_edge_df)
cur_edge_df <- rbind(cur_promoter_edge_df, cur_enhancer_edge_df)
edge_df <- rbind(edge_df, cur_edge_df)
vertex_df <- rbind(vertex_df, cur_vertex_df)
}
vertex_df <- data.frame(name=na.omit(as.character(unique(vertex_df$name))))
vertex_df$name <- as.character(vertex_df$name)
edge_df <- na.omit(edge_df)
################################################################################
# visual settings for network
################################################################################
# color vertices based on Diagnosis DEGs:
up_in_AD <- celltype.diagnosis.markers %>% subset(cluster == 'AD' & celltype == cur_celltype & avg_logFC >=0) %>% .$gene
down_in_AD <- celltype.diagnosis.markers %>% subset(cluster == 'AD' & celltype == cur_celltype & avg_logFC < 0) %>% .$gene
# remove labels if gene is not DE, or not a TF:
de_targets <- as.character(vertex_df$name[vertex_df$name %in% unique(c(up_in_AD, down_in_AD))])
vertex_df$label <- ifelse(vertex_df$name %in% de_targets, vertex_df$name, '')
vertex_df$label <- ifelse(vertex_df$name %in% as.character(motif_names), vertex_df$name, vertex_df$label)
vertex_df$label <- ifelse(vertex_df$name %in% gwas_genes, vertex_df$name, vertex_df$label)
# set node color based on control vs AD DEGs:
vertex_df$color <- ifelse(vertex_df$name %in% as.character(motif_names), 'dodgerblue', rgb(1, 1,1 , 0.5))
vertex_df$color <- ifelse(vertex_df$name %in% up_in_AD, "#E87D72", rgb(1, 1,1 , 0.5))
vertex_df$color <- ifelse(vertex_df$name %in% down_in_AD, '#55BCC2', vertex_df$color)
vertex_df$color <- ifelse(vertex_df$name %in% as.character(motif_names), 'dodgerblue',vertex_df$color)
vertex_df$color <- ifelse(vertex_df$name %in% gwas_genes, 'orange', vertex_df$color)
# italics font for genes:
vertex_df$font <- ifelse(vertex_df$name %in% as.character(motif_names), 2, 4)
# set size to larger if the gene is a TF:
ertex_df$size <- ifelse(vertex_df$name %in% as.character(motif_names), 10, 2)
other_tfs <- as.character(motif_names)[as.character(motif_names) %ni% as.character(unlist(motif_names[motif_IDs]))]
vertex_df$size <- ifelse((vertex_df$name %in% de_targets | vertex_df$name %in% gwas_genes | vertex_df$name %in% other_tfs), 5, 2)
vertex_df$size <- ifelse(vertex_df$name %in% as.character(unlist(motif_names[motif_IDs])), 10, vertex_df$size)
################################################################################
# graph all nodes
################################################################################
enhancer_color <- 'seagreen3'
promoter_color <- 'plum1'
enhancer_color <- 'goldenrod1'
promoter_color <- 'darkturquoise'
# repressor_color <- 'gray'
g <- igraph::graph_from_data_frame(edge_df, directed=TRUE, vertices=vertex_df)
l <- layout_with_fr(g)
edge_colors <- ifelse(E(g)$type == 'promoter', promoter_color, enhancer_color)
# edge_colors <- ifelse(E(g)$type == 'repressor', repressor_color, edge_colors)
pdf(paste0('figures/', cur_celltype, '_TF_interaction_graph.pdf'), width=10, height=10, useDingbats=FALSE)
plot(
g, layout=l,
vertex.size=vertex_df$size,
edge.color=edge_colors,
edge.alpha=0.5,
vertex.color=vertex_df$color,
vertex.label=vertex_df$label, vertex.label.family='Helvetica', vertex.label.font=vertex_df$font,
vertex.label.color = 'black',
edge.arrow.size=0.25
)
dev.off()
```