-
Notifications
You must be signed in to change notification settings - Fork 33
/
scWGCNA.R
274 lines (205 loc) · 10.4 KB
/
scWGCNA.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
####Code by Vivek Swarup, PhD UC Irvine #############
###contact [email protected]################
#####################################################
##Single-nuclei Consensus Weighted Gene Co-expression Network Analysis (scWGCNA)
##ROSMAP data was downloaded and processed as mentioned in Morabito et al., https://doi.org/10.1101/695221
## Mathys et al data was downloaded from Synapse (syn18485175; doi:10.7303/syn18485175)
## Our snRNA-seq and Bulk-tissue RNA-seq data is available at https://www.synapse.org/#!Synapse:syn22079621/
#####################################################
library(Seurat)
library(WGCNA)
enableWGCNAThreads()
library(flashClust)
##Get the metacells for microglial (MG) from the snRNA-seq integrated data
metacell_seurat=readRDS('MG_joint_metacells_50.rds')
group=factor(targets.MG$Diagnosis,c('Control','AD'))
datExpr.Cluster <- as.data.frame(GetAssayData(metacell_seurat, assay='RNA', slot='data')[VariableFeatures(metacell_seurat),])
datExpr.Cluster=as.data.frame(t(datExpr.Cluster))
rm(metacell_seurat)
ensembl=read.csv('hg38_GeneSymbol_ENSG.csv')
gnS=intersect(colnames(datExpr.Cluster),ensembl$Gene.name)
cat(length(gnS),'\n')
datExpr.Cluster=datExpr.Cluster[,match(gnS,colnames(datExpr.Cluster))]
ensembl1=ensembl[match(gnS,ensembl$Gene.name),]
colnames(datExpr.Cluster)=ensembl1$Gene.stable.ID
cat(length(gnS),'\n')
##load Bulk-tissue RNA-seq Data
load('/home/vivek/AD2019/cWGCNA/UCI_PFC_expression_metaData.rda')
load('/home/vivek/AD2019/cWGCNA/ROSMAP_DLPFC_expression_metaData.rda')
datExpr.ROSMAP=as.data.frame(t(normExpr.ROSMAP))
gnS=intersect(colnames(datExpr.Cluster),intersect(colnames(datExpr.ROSMAP),colnames(datExpr.UCI)))
cat(length(gnS),'\n')
datExpr.ROSMAP =datExpr.ROSMAP[,match(gnS,colnames(datExpr.ROSMAP))]
datExpr.UCI =datExpr.UCI[,match(gnS,colnames(datExpr.UCI))]
datExpr.Cluster =datExpr.Cluster [,match(gnS,colnames(datExpr.Cluster))]
# Make a multi-Expression data list containing all the data
nSets=3
setLabels=c("UCI","ROSMAP","Cluster.NucSeq.MG")
shortLabels=setLabels
multiExpr=vector(mode="list",length=nSets)
multiExpr[[1]] = list(data=as.data.frame(datExpr.UCI)) # UCI Data
names(multiExpr[[1]]$data)=colnames(datExpr.UCI)
rownames(multiExpr[[1]]$data)=rownames(datExpr.UCI)
multiExpr[[2]] = list(data=as.data.frame(datExpr.ROSMAP)) # ROSMAP Data
names(multiExpr[[2]]$data)=colnames(datExpr.ROSMAP)
rownames(multiExpr[[2]]$data)=rownames(datExpr.ROSMAP)
multiExpr[[3]] = list(data=as.data.frame(datExpr.Cluster)) #New Brain
names(multiExpr[[3]]$data)=colnames(datExpr.Cluster)
rownames(multiExpr[[3]]$data)=rownames(datExpr.Cluster)
checkSets(multiExpr) # check data size
multiMeta=list(UCI=list(data=targets.UCI),ROSMAP=list(data=targets.ROSMAP),Cluster.NucSeq.MG=list(data=targets.MG))
save(list=ls(),file="Consensus_UCI_ROSMAP_ClusterMG.rda")
## Network Construction
# Choose a set of soft-thresholding powers
powers = c(seq(1,10,by=1), seq(12,30, by=2));
# Initialize a list to hold the results of scale-free analysis
powerTables = vector(mode = "list", length = nSets);
# Call the network topology analysis function for each set in turn
for (set in 1:nSets)
powerTables[[set]] = list(data = pickSoftThreshold(multiExpr[[set]]$data, powerVector=powers,
verbose = 100,networkType="signed",corFnc="bicor")[[2]]);
# Plot the results:
pdf("1_Power.pdf", height=10, width=18)
colors = c("blue", "red","black")
# Will plot these columns of the returned scale free analysis tables
plotCols = c(2,5,6,7)
colNames = c("Scale Free Topology Model Fit", "Mean connectivity", "mean connectivity",
"Max connectivity");
# Get the minima and maxima of the plotted points
ylim = matrix(NA, nrow = 2, ncol = 4);
for (set in 1:nSets)
{
for (col in 1:length(plotCols))
{
ylim[1, col] = min(ylim[1, col], powerTables[[set]]$data[, plotCols[col]], na.rm = TRUE);
ylim[2, col] = max(ylim[2, col], powerTables[[set]]$data[, plotCols[col]], na.rm = TRUE);
}
}
# Plot the quantities in the chosen columns vs. the soft thresholding power
par(mfcol = c(2,2));
par(mar = c(4.2, 4.2 , 2.2, 0.5))
cex1 = 0.7;
for (col in 1:length(plotCols)) for (set in 1:nSets)
{
if (set==1)
{
plot(powerTables[[set]]$data[,1], -sign(powerTables[[set]]$data[,3])*powerTables[[set]]$data[,2],
xlab="Soft Threshold (power)",ylab=colNames[col],type="n", ylim = ylim[, col],
main = colNames[col]);
addGrid();
}
if (col==1)
{
text(powerTables[[set]]$data[,1], -sign(powerTables[[set]]$data[,3])*powerTables[[set]]$data[,2],
labels=powers,cex=cex1,col=colors[set]);
} else
text(powerTables[[set]]$data[,1], powerTables[[set]]$data[,plotCols[col]],
labels=powers,cex=cex1,col=colors[set]);
if (col==1)
{
legend("bottomright", legend = setLabels, col = colors, pch = 20) ;
} else
legend("topright", legend = setLabels, col = colors, pch = 20) ;
}
dev.off()
save(list=ls(),file="Consensus_UCI_ROSMAP_ClusterMG.rda")
## Consensus WGCNA
load("Consensus_UCI_ROSMAP_ClusterMG.rda")
softPower=18 ## power was chosen based on figure above
net=blockwiseConsensusModules(multiExpr, blocks = NULL,
#maxBlockSize = 30000, ## This should be set to a smaller size if the user has limited RAM
randomSeed = 12345,
corType = "pearson", ## no use for bicor
power = softPower,
consensusQuantile = 0.3,
networkType = "signed",
TOMType = "unsigned",
TOMDenom = "min",
scaleTOMs = TRUE, scaleQuantile = 0.8,
sampleForScaling = TRUE, sampleForScalingFactor = 1000,
useDiskCache = TRUE, chunkSize = NULL,
deepSplit = 4,
pamStage=FALSE,
detectCutHeight = 0.995, minModuleSize = 50,
mergeCutHeight = 0.2,
saveConsensusTOMs = TRUE,
consensusTOMFilePattern = "ConsensusTOM-block.%b.rda")
save(list=ls(),file="Consensus_UCI_ROSMAP_ClusterMG.rda")
consMEs = net$multiMEs;
moduleLabels = net$colors;
# Convert the numeric labels to color labels
moduleColors = labels2colors(moduleLabels)
table(moduleColors)
consTree = net$dendrograms[[1]];
##UCI
MEs=moduleEigengenes(multiExpr[[1]]$data, colors = moduleColors, nPC=1)$eigengenes
MEs=orderMEs(MEs)
datExpr.UCI=multiExpr[[1]]$data
meInfo<-data.frame(rownames(datExpr.UCI), MEs)
colnames(meInfo)[1]= "SampleID"
KMEs<-signedKME(datExpr.UCI, MEs,outputColumnName = "kME",corFnc = "bicor")
ensembl=ensembl[na.omit(match(colnames(datExpr.UCI),ensembl$Gene.stable.ID)),]
geneInfo=as.data.frame(cbind(ensembl$Gene.stable.ID,ensembl$Gene.name,moduleColors, KMEs))
# merged gene symbol column
colnames(geneInfo)[1]= "Ensembl.Gene.ID"
colnames(geneInfo)[2]= "GeneSymbol"
colnames(geneInfo)[3]= "Initially.Assigned.Module.Color"
write.csv(geneInfo,file=paste('geneInfoSigned_UCI.csv',sep=''))
PCvalues.UCI=MEs
####ROSMAP
MEs=moduleEigengenes(multiExpr[[2]]$data, colors = moduleColors, nPC=1)$eigengenes
MEs=orderMEs(MEs)
datExpr.ROSMAP=multiExpr[[2]]$data
meInfo<-data.frame(rownames(datExpr.ROSMAP), MEs)
colnames(meInfo)[1]= "SampleID"
KMEs<-signedKME(datExpr.ROSMAP, MEs,outputColumnName = "kME",corFnc = "bicor")
ensembl=ensembl[na.omit(match(colnames(datExpr.ROSMAP),ensembl$Gene.stable.ID)),]
geneInfo=as.data.frame(cbind(ensembl$Gene.stable.ID,ensembl$Gene.name,moduleColors, KMEs))
# merged gene symbol column
colnames(geneInfo)[1]= "Ensembl.Gene.ID"
colnames(geneInfo)[2]= "GeneSymbol"
colnames(geneInfo)[3]= "Initially.Assigned.Module.Color"
write.csv(geneInfo,file=paste('geneInfoSigned_ROSMAP.csv',sep=''))
PCvalues.ROSMAP=MEs
PCvalues.ROSMAP=PCvalues.ROSMAP[,match(colnames(PCvalues.UCI),colnames(PCvalues.ROSMAP))]
MEs.snRNAseq=moduleEigengenes(multiExpr[[3]]$data, colors = moduleColors, nPC=1)$eigengenes
MEs.snRNAseq=orderMEs(MEs.snRNAseq)
PCvalues.snRNAseq=MEs.snRNAseq
PCvalues.snRNAseq=PCvalues.snRNAseq[,match(colnames(PCvalues.UCI),colnames(PCvalues.snRNAseq))]
pdf('ME_trajectory_Plot.MGClusters.pdf',width=26,height=12,useDingbats=F)
##
toplot=t(PCvalues.UCI)
toplot.ROSMAP=t(PCvalues.ROSMAP)
toplot.snRNAseq=t(PCvalues.snRNAseq)
cols=substring(colnames(MEs),3,20)
par(mfrow=c(2,5))
par(mar=c(12,6,4,2))
for (i in 1:nrow(toplot)) {
group.UCI=factor(targets.UCI$Path.Classification,c('Control','Early-Pathology AD','Late-Pathology AD'))
l1=summary(lm(toplot[i,]~group.UCI))
Early.pval=signif(l1$coefficients[2,4],2)
Late.pval=signif(l1$coefficients[3,4],2)
boxplot(toplot[i,]~group.UCI,col=c('blue','lightgreen','red'),ylab="ME Value",main=paste(rownames(toplot)[i],"\n","Early.Path pvalue=",Early.pval," Late.path pvalue=",Late.pval,sep=""),xlab=NULL,las=2,outpch = NA,xact="n")
stripchart(toplot[i,]~group.UCI,vertical=T,method="jitter",pch=21,col='maroon',bg='bisque',add=T)
axis(1,labels=F)
axis(2,labels=F)
boxplot(toplot[i,]~factor(targets.UCI$Sex,c('M','F')),col=cols[i],ylab="ME",main=rownames(toplot)[i],xlab=NULL,las=2)
group.ROSMAP=factor(targets.ROSMAP$Path.Classification,c('Control','Early-Pathology AD','Late-Pathology AD'))
l1=summary(lm(toplot.ROSMAP[i,]~group.ROSMAP))
Early.pval=signif(l1$coefficients[2,4],2)
Late.pval=signif(l1$coefficients[3,4],2)
boxplot(toplot.ROSMAP[i,]~group.ROSMAP,col=c('blue','lightgreen','red'),ylab="ME Value",main=paste(rownames(toplot)[i],"\n","Early.Path pvalue=",Early.pval," Late.path pvalue=",Late.pval,sep=""),xlab=NULL,las=2,outpch = NA,xact="n")
stripchart(toplot.ROSMAP[i,]~group.ROSMAP,vertical=T,method="jitter",pch=21,col='maroon',bg='bisque',add=T)
axis(1,labels=F)
axis(2,labels=F)
boxplot(toplot.ROSMAP[i,]~as.factor(targets.ROSMAP$msex.x),col=cols[i],ylab="ME",main=rownames(toplot)[i],xlab=NULL,las=2)
boxplot(toplot.snRNAseq[i,]~group,col=cols[i],ylab="ME",main=paste(rownames(toplot)[i],'snRNAseq'),xlab=NULL,las=2)
}
dev.off()
pdf("SignedDendro_Consensus.pdf",height=10, width=15)
plotDendroAndColors(consTree, moduleColors, "Module colors", dendroLabels = FALSE, hang = 0.03, addGuide = TRUE, guideHang = 0.05,
main = "Consensus gene dendrogram and module colors")
dev.off()
##Final saving
save(list=ls(),file="Consensus_UCI_ROSMAP_ClusterMG.rda")