-
Notifications
You must be signed in to change notification settings - Fork 1
/
train_ode.py
255 lines (202 loc) · 8.04 KB
/
train_ode.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
from functools import partial
import jax
from typing import Any, Callable, Sequence, Optional, NewType
from jax import lax, random, vmap, numpy as jnp
from models.ode import odeint
import flax
from flax.training import train_state
from flax import traverse_util
from flax.core import freeze, unfreeze
from flax import linen as nn
from flax import serialization
import optax
import tensorflow_datasets as tfds
import numpy as np
from tqdm import tqdm
import os
# Define Residual Block
class ResDownBlock(nn.Module):
"""Single ResBlock w/ downsample"""
dim_out: Any = 64
@nn.compact
def __call__(self, inputs):
x = inputs
f_x = nn.relu(nn.GroupNorm(self.dim_out)(x))
x = nn.Conv(features=self.dim_out, kernel_size=(1, 1), strides=(2, 2))(x)
f_x = nn.Conv(features=self.dim_out, kernel_size=(3, 3), strides=(2, 2))(f_x)
f_x = nn.relu(nn.GroupNorm(self.dim_out)(f_x))
f_x = nn.Conv(features=self.dim_out, kernel_size=(3, 3))(f_x)
x = f_x + x
return x
class ConcatConv2D(nn.Module):
"""Concat dynamics to hidden layer"""
dim_out: Any = 64
ksize: Any = 3
@nn.compact
def __call__(self, inputs, t):
x = inputs
tt = jnp.ones_like(x[:, :, :, :1]) * t
ttx = jnp.concatenate([tt, x], -1)
return nn.Conv(features=self.dim_out, kernel_size=(self.ksize, self.ksize))(ttx)
# Define Neural ODE for mnist example.
class ODEfunc(nn.Module):
"""ODE function which replace ResNet"""
dim_out: Any = 64
ksize: Any = 3
@nn.compact
def __call__(self, inputs, t):
x = inputs
out = nn.GroupNorm(self.dim_out)(x)
out = nn.relu(out)
out = ConcatConv2D(self.dim_out, self.ksize)(out, t)
out = nn.GroupNorm(self.dim_out)(out)
out = nn.relu(out)
out = ConcatConv2D(self.dim_out, self.ksize)(out, t)
out = nn.GroupNorm(self.dim_out)(out)
return out
class NFEcounter(nn.Module):
@nn.compact
def __call__(self):
is_initialized = self.has_variable('nfe', 'nfe')
nfe = self.variable('nfe', 'nfe', jnp.array, [0])
if is_initialized:
nfe.value += 1
class ODEBlock(nn.Module):
"""ODE block which contains odeint"""
tol: Any = 1.
@nn.compact
def __call__(self, inputs, params):
ode_func = ODEfunc()
ode_func_apply = lambda x, t: ode_func.apply(variables={'params': params}, inputs=x, t=t)
states, nfe = odeint(ode_func_apply,
inputs, jnp.array([0., 1.]),
rtol=self.tol, atol=self.tol)
return states[-1], nfe
class ODEBlockVmap(nn.Module):
"""Apply vmap to ODEBlock"""
tol: Any = 1.
@nn.compact
def __call__(self, inputs, params):
x = inputs
vmap_odeblock = nn.vmap(ODEBlock,
variable_axes={'params': 0},
split_rngs={'params': True},
in_axes=(0, None))
return vmap_odeblock(tol=self.tol, name='odeblock')(x, params)
class FullODENet(nn.Module):
"""Full ODE net which contains two downsampling layers, ODE block and linear classifier."""
dim_out: Any = 64
ksize: Any = 3
tol: Any = 1.
@nn.compact
def __call__(self, inputs):
x = inputs
x = nn.Conv(features=self.dim_out, kernel_size=(self.ksize, self.ksize))(x)
x = ResDownBlock()(x)
x = ResDownBlock()(x)
ode_func = ODEfunc()
init_fn = lambda rng, x: ode_func.init(random.split(rng)[-1], x, 0.)['params']
ode_func_params = self.param('ode_func', init_fn, jnp.ones_like(x))
x, nfe = ODEBlock(tol=self.tol)(x, ode_func_params)
x = nn.GroupNorm(self.dim_out)(x)
x = nn.relu(x)
x = nn.avg_pool(x, (1, 1))
x = x.reshape((x.shape[0], -1)) # flatten
x = nn.Dense(features=10)(x)
x = nn.log_softmax(x)
return x, nfe
# Define loss
@jax.jit
def cross_entropy_loss(logits, labels):
one_hot_labels = jax.nn.one_hot(labels, num_classes=10)
return -jnp.mean(jnp.sum(one_hot_labels * logits, axis=-1))
# Metric computation
def compute_metrics(logits, labels, nfe):
loss = cross_entropy_loss(logits=logits, labels=labels)
accuracy = jnp.mean(jnp.argmax(logits, -1) == labels)
metrics = {
'loss': loss,
'accuracy': accuracy,
'nfe': nfe
}
return metrics
def get_datasets():
"""Load MNIST train and test datasets into memory."""
ds_builder = tfds.builder('mnist')
ds_builder.download_and_prepare()
train_ds = tfds.as_numpy(ds_builder.as_dataset(split='train', batch_size=-1))
test_ds = tfds.as_numpy(ds_builder.as_dataset(split='test', batch_size=-1))
train_ds['image'] = jnp.float32(train_ds['image']) / 255.
test_ds['image'] = jnp.float32(test_ds['image']) / 255.
return train_ds, test_ds
def create_train_state(rng, learning_rate, tol):
"""Creates initial 'TrainState'."""
odenet = FullODENet(tol=tol)
params = odenet.init(rng, jnp.ones([1, 28, 28, 1]))['params']
tx = optax.adam(learning_rate)
return train_state.TrainState.create(
apply_fn=odenet.apply, params=params, tx=tx
)
# Training step
@partial(jax.jit, static_argnums=(2,))
def train_step(state, batch, tol):
"""Train for a single step."""
def loss_fn(params):
logits, nfe = FullODENet(tol=tol).apply({'params': params}, batch['image'])
loss = cross_entropy_loss(logits=logits, labels=batch['label'])
return (loss, (logits, nfe))
grad_fn = jax.value_and_grad(loss_fn, has_aux=True)
(_, logits_nfe), grads = grad_fn(state.params)
logits, nfe = logits_nfe
state = state.apply_gradients(grads=grads)
metrics = compute_metrics(logits=logits, labels=batch['label'], nfe=nfe)
return state, metrics
# Evaluation step
@partial(jax.jit, static_argnums=(2,))
def eval_step(params, batch, tol):
logits, nfe = FullODENet(tol=tol).apply({'params': params}, batch['image'])
return compute_metrics(logits=logits, labels=batch['label'], nfe=nfe.mean())
# Train function
def train_epoch(state, train_ds, batch_size, epoch, rng, tol):
"""Train for a single epoch"""
train_ds_size = len(train_ds['image'])
steps_per_epoch = train_ds_size // batch_size
perms = jax.random.permutation(rng, len(train_ds['image']))
perms = perms[:steps_per_epoch * batch_size] # skip incomplete batch
perms = perms.reshape((steps_per_epoch, batch_size))
batch_metrics = []
for perm in tqdm(perms):
batch = {k: v[perm, ...] for k, v in train_ds.items()}
state, metrics = train_step(state, batch, tol)
batch_metrics.append(metrics)
# compute mean of metrics across each batch in epoch.
batch_metrics_np = jax.device_get(batch_metrics)
epoch_metrics_np = {
k: np.mean([metrics[k] for metrics in batch_metrics_np])
for k in batch_metrics_np[0]
}
print('train epoch: %d, loss: %.4f, accuracy: %.2f, forward nfe: %.2f' % (
epoch, epoch_metrics_np['loss'], epoch_metrics_np['accuracy'] * 100, epoch_metrics_np['nfe']
))
return state
# Eval function
def eval_model(params, test_ds, tol):
metrics = eval_step(params, test_ds, tol)
metrics = jax.device_get(metrics)
summary = jax.tree_map(lambda x: x.item(), metrics)
return summary['loss'], summary['accuracy']
def train_and_evaluate(learning_rate, n_epoch, batch_size, tol):
train_ds, test_ds = get_datasets()
rng = jax.random.PRNGKey(0)
rng, init_rng = jax.random.split(rng)
state = create_train_state(init_rng, learning_rate, tol)
del init_rng # Must not be used anymore.
for epoch in range(1, n_epoch + 1):
rng, input_rng = jax.random.split(rng)
state = train_epoch(state, train_ds, batch_size, epoch, input_rng, tol)
test_loss, test_accuracy = eval_model(state.params, test_ds, tol)
print(' test epoch: %d, loss: %.2f, accuracy: %.2f' % (
epoch, test_loss, test_accuracy * 100
))
if __name__ == '__main__':
train_and_evaluate(0.0001, 10, 128, 0.1)