-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmap_NMF.py
468 lines (404 loc) · 18.1 KB
/
map_NMF.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
# -*- coding: utf-8 -*-
# %%
import os
import psutil
import numpy as np
import pandas as pd
from sklearn import decomposition
from pymcr.mcr import McrAR
from pymcr.regressors import NNLS, OLS
from pymcr.constraints import ConstraintNonneg, ConstraintNorm
from scipy.ndimage import median_filter
import matplotlib.pyplot as plt
from matplotlib.cm import ScalarMappable
from matplotlib import colors, colormaps, patches
import seaborn as sns
from tkinter import filedialog, Tk, messagebox
from timeit import default_timer as time
from read_WDF import convert_time, read_WDF
from warnings import warn
import utilities as ut
import preprocessing as pp
sns.set()
'''This script uses NMF deconvolution
to produce some informative graphical output on map scans.
ATTENTION: you are supposed to provide your spectra in .wdf files)
All of the imported scripts should be in your working directory
You should first choose the data file with the map scan in the .wdf format
Set the initialization dictionary values
That'_s it!
'''
def change_unit(bsize, factor=1024, suffix="B"):
"""
Scale bytes to its proper format
e.g:
1253656 => '1.20MB'
1253656678 => '1.17GB'
"""
for unit in ["", "K", "M", "G", "T", "P"]:
if bsize < factor:
return bsize, unit+suffix
else:
bsize /= factor
def memory_check(filesize, suffix="B"):
"""
Compare the available os memory with the objects' memory
"""
fsize, fsize_unit = change_unit(filesize)
print(f"Objects' size is: {fsize:.2f} {fsize_unit}")
memory_data = psutil.virtual_memory()
msize, msize_unit = change_unit(memory_data.available)
print(f"Available memory is {msize:.2f} {msize_unit}")
# %%
# -----------------------Choose a file-----------------------------------------
folder_name = os.path.abspath("/home/dejan/Documents/RamanData/frejus21/")
file_name = "exampleA2.wdf"
filename = os.path.join(folder_name, file_name)
memory_check(os.path.getsize(filename))
initialization = {'SliceValues': [None, None], # Use None to count all
'NMF_NumberOfComponents': 4,
'PCA_components': 5,
# Put in the int number from 0 to _n_y:
'NumberOfLinesToSkip_Beggining': 0,
# Put in the int number from 0 to _n_y - previous element:
'NumberOfLinesToSkip_End': 0,
'BaselineCorrection': False,
'CosmicRayCorrection': False,
# Nearest neighbour method
# To use only in maps where step sizes are smaller then
# Sample's feature sizes (oversampled maps)
'AbsoluteScale': False, # what type of colorbar to use
"save_data": False}
# %%
# Reading the data from the .wdf file
spectra, sigma, params, map_params, origins =\
read_WDF(filename, verbose=True)
"""
- `spectra` : 2D ndarray
contains the intensities recorded at each point in a map scan.
It is of shape: `(N°_measurement_points, N°_RamanShifts)`
- `sigma` : 1D ndarray
contains all the ramans shift values (x_values)
Its' length is `N°_RamanShifts`
- `params` is a dictionnary containing measurement parameters
- `map_params` is dictionnary containing map parameters
- `origins` : pandas dataframe
gives detail on each point in the map
(time of measurement, _coordinates and some other info).
> _Note: It should be noted that the timestamp
recorded in the origins dataframe is in the Windows 64bit format,
if you want to convert it to the human readable format,
you can use the imported "convert_time" function_
"""
assert params['MeasurementType'] == 'Map', 'This script is intended for maps'
# %%
# put the retreived number of measurements in a variable
# with a shorter name, as it will be used quite often:
_n_points = params.get('Count', len(spectra))
try:
# Finding in what axes the scan was taken:
_scan_axes = np.where(map_params['NbSteps'] > 1)[0]
except (NameError, KeyError):
_scan_axes = (0, 1)
try:
# ATTENTION : from this point on in the script,
# the two relevant dimensions will be called X and Y
# regardless if one of them is Z in reality (for slices)
_n_x, _n_y = map_params['NbSteps'][_scan_axes]
except (NameError, KeyError, ValueError):
while True:
_n_x = int(input("Enter the total number of measurement points "
"along x-axis: "))
_n_y = int(input("Enter the total number of measurement points "
"along y-axis: "))
if _n_x*_n_y == _n_points:
print("That looks ok.")
break
elif _n_x * _n_y != _n_points:
warn("\nWrong number of points. Try again:")
continue
break
try:
_s_x, _s_y = map_params['StepSizes'][_scan_axes]
except (NameError, KeyError, ValueError):
_s_x = int(input("Enter the size of the step along x-axis: "))
_s_y = int(input("Enter the size of the step along y-axis: "))
print("ok")
if (initialization['NumberOfLinesToSkip_Beggining']
+ initialization['NumberOfLinesToSkip_End']) > _n_y:
raise SystemExit('You chose to skip more lines than present in the scan.\n'
'Please revise your initialization parameters')
# readjust the number of rows:
_n_y -= initialization['NumberOfLinesToSkip_End'] +\
initialization['NumberOfLinesToSkip_Beggining']
# spectra2 = np.copy(spectra)
# spectra2.resize(_n_y, _n_x, len(sigma))
# spectra = spectra2.reshape(_n_x*_n_y, -1)
# spectra = pp.correct_saturated(spectra, (_n_y, _n_x))
# del spectra2
# %%
# =============================================================================
# SLICING....
# =============================================================================
# Isolating the part of the spectra that interests us
spectra_kept, sigma_kept = ut.slice_lr(spectra, sigma, **initialization)
# Removing the lines from top and/or bottom of the map
spectra_kept = ut.skip_ud(spectra_kept, _n_x=_n_x, **initialization)
spectra_kept -= np.min(spectra_kept, axis=-1, keepdims=True)
spectra_log = (np.log(spectra_kept+1)).reshape(_n_y, _n_x, -1)
see_all_maps = ut.AllMaps(spectra_log,
sigma=sigma_kept) # , title="raw spectra (log_scale)")
plt.suptitle("raw spectra (log_scale)")
# %%
# =============================================================================
# Finding the baseline using the asynchronous least squares method
# =============================================================================
if initialization['BaselineCorrection']:
b_line = ut.baseline_als(spectra_kept, p=1e-3, lam=3000*len(sigma_kept))
b_corr_spectra = spectra_kept - b_line
# Remove the eventual offsets:
b_corr_spectra -= np.min(b_corr_spectra, axis=1)[:, np.newaxis]
# Visualise the baseline correction:
_baseline_stack = np.stack((spectra_kept, b_line, b_corr_spectra),
axis=-1)
labels = ['original spectra', 'baseline', 'baseline corrected spectra']
check_baseline = ut.NavigationButtons(sigma_kept, _baseline_stack,
autoscale_y=True, label=labels)
see_baseline_map = ut.AllMaps(b_line.reshape(_n_y, _n_x, -1),
sigma=sigma_kept)
plt.suptitle("baseline")
else:
b_corr_spectra = spectra_kept -\
np.min(spectra_kept, axis=-1, keepdims=True)
# %%
# =============================================================================
# CR correction...
# =============================================================================
if initialization['CosmicRayCorrection']:
print("starting the cosmic ray correction")
mock_sp3 = ut.remove_CRs(b_corr_spectra, sigma_kept,
_n_x=0, _n_y=0, **initialization)
else:
mock_sp3 = b_corr_spectra
# %%
# =============================================================================
# ---------------------------------- PCA --------------------------------------
# =============================================================================
print(f"smoothing with PCA ({initialization['PCA_components']} components)")
# =============================================================================
mock_sp3 /= np.trapz(mock_sp3, axis=-1)[:, None]
pca = decomposition.PCA(n_components=initialization['PCA_components'])
spectra_reduced = pca.fit_transform(mock_sp3)
# spectra_reduced = np.dot(mock_sp3 - np.mean(mock_sp3, axis=0), pca.components_.T)
spectra_denoised = pca.inverse_transform(spectra_reduced)
# spectra_denoised -= np.min(spectra_denoised, axis=-1, keepdims=True)
# spectra_denoised = np.dot(spectra_reduced, pca.components_)+np.mean(mock_sp3, axis=0)
vidji_pca = ut.AllMaps(spectra_reduced.reshape(_n_y, _n_x, -1),
components=pca.components_,
components_sigma=sigma_kept, title="pca component")
########### showing the smoothed spectra #####################
_s = np.stack((mock_sp3 - np.min(mock_sp3, axis=-1, keepdims=True),
spectra_denoised), axis=-1)
see_all_denoised = ut.NavigationButtons(sigma_kept, _s, autoscale_y=True,
label=["scaled orig spectra",
"pca denoised"],
figsize=(12, 12))
see_all_denoised.figr.suptitle("PCA denoising result")
del b_corr_spectra
del mock_sp3
# %%
# =============================================================================
# NMF step
# =============================================================================
# initialization['NMF_NumberOfComponents'] = 6
spectra_denoised -= np.min(spectra_denoised, axis=-1, keepdims=True)
norma = 1#np.sum(spectra_denoised, axis=-1, keepdims=True)
normalized_spectra = spectra_denoised / norma
#%%
_n_components = initialization['NMF_NumberOfComponents']
nmf_model = decomposition.NMF(n_components=_n_components, init='nndsvda',
max_iter=7)#, alpha_W=0.01, alpha_H=0.1)
_start = time()
print('starting nmf... (be patient, this may take some time...)')
mix = nmf_model.fit_transform(normalized_spectra)
mix_norma = np.sum(mix, axis=-1, keepdims=True)
mix /= mix_norma
# components = nmf_model.components_
#%%
print('renormalizing components and coefficients...')
# Note constraint order matters
mcrar = McrAR(max_iter=100, st_regr='NNLS', c_regr='OLS',
c_constraints=[ConstraintNonneg(), ConstraintNorm()],
st_constraints=[ConstraintNonneg()])
mcrar.fit(normalized_spectra, C=mix)
#%%
# components_norma = np.sum(components, axis=-1, keepdims=True)
components = mcrar.ST_opt_
mix = mcrar.C_opt_
reconstructed_spectra = mcrar.D_opt_
_end = time()
print(f'nmf done in {_end - _start:.2f}s')
# %%
# =============================================================================
# preparing the mixture coefficients
# =============================================================================
_start_pos = 0
mix.resize((_n_x*_n_y), _n_components, )
mix = np.roll(mix, _start_pos, axis=0)
spectra_reconstructed = np.dot(mix, components)
_mix_reshaped = mix.reshape(_n_y, _n_x, _n_components)
vidju_nmf = ut.AllMaps(_mix_reshaped, components=components,
components_sigma=sigma_kept,
title="Map of component's contribution")
plt.suptitle("Resluts of NMF")
# %%
# =============================================================================
# Plotting the components....
# =============================================================================
sns.set() # to make plots pretty :)
# to keep always the same colors for the same components:
col_norm = colors.Normalize(vmin=0, vmax=_n_components)
color_set = ScalarMappable(norm=col_norm, cmap="hsv")
# infer the number of subplots and their disposition from n_components
fi, _ax = plt.subplots(int(np.floor(np.sqrt(_n_components))),
int(np.ceil(_n_components /
np.floor(np.sqrt(_n_components))
)), sharex=True, sharey=False)
if _n_components > 1:
_ax = _ax.ravel()
else:
_ax = [_ax]
for _i in range(_n_components):
_ax[_i].plot(sigma_kept, components[_i].T, color=color_set.to_rgba(_i))
_ax[_i].set_title(f'Component {_i}')
_ax[_i].set_yticks([])
try:
fi.text(0.5, 0.04,
f"{params['XlistDataType']} recordings"
f" in {params['XlistDataUnits']} units",
ha='center')
except:
pass
# %%
# =============================================================================
# Plotting the main plot...
# =============================================================================
_n_fig_rows = int(np.floor(np.sqrt(_n_components)))
_n_fig_cols = int(np.ceil(_n_components / np.floor(np.sqrt(_n_components))))
fig, _ax = plt.subplots(_n_fig_rows, _n_fig_cols,
sharex=True, sharey=True)
if _n_components > 1:
_ax = _ax.ravel()
else:
_ax = [_ax]
mix_sum = np.sum(mix, axis=-1)
def onclick(event):
'''Double-clicking on a pixel will pop-up the (cleaned) spectrum
corresponding to that pixel, as well as its deconvolution on the components
and again the reconstruction for visual comparison'''
if event.inaxes:
x_pos = int(np.floor(event.xdata))
y_pos = int(np.floor(event.ydata))
broj = int(y_pos*_n_x + x_pos)
spec_num = int(y_pos*_n_x - _start_pos + x_pos)
if event.dblclick:
ff, aa = plt.subplots()
aa.scatter(sigma_kept, normalized_spectra[spec_num], alpha=0.3,
label=f'(cleaned) spectrum n°{broj}')
aa.plot(sigma_kept, spectra_reconstructed[broj], '--k',
label='reconstructed spectrum')
for k in range(_n_components):
aa.plot(sigma_kept, components[k]*mix[broj][k],
color=color_set.to_rgba(k),
label=f'Component {k} contribution'
f'({mix[broj][k]*100/mix_sum[broj]:.1f}%)')
# This next part is to reorganize the order of labels,
# so to put the scatter plot first
handles, labels = aa.get_legend_handles_labels()
order = list(np.arange(_n_components+2))
new_order = [order[-1]]+order[:-1]
aa.legend([handles[idx] for idx in new_order],
[labels[idx] for idx in new_order])
aa.set_title(f'deconvolution of the spectrum from: '
f'line {y_pos} & column {x_pos}')
ff.show()
else:
print("you clicked outside the canvas, you bastard :)")
#################################################################################
############## This formatting should be adapted case by case ###################
#################################################################################
if initialization['AbsoluteScale'] == True:
scaling = {'vmin': 0, 'vmax': 1}
else:
scaling = {}
for _i in range(_n_components):
sns.heatmap(_mix_reshaped[:, :, _i], ax=_ax[_i],
cmap="magma", annot=False, **scaling)
# _ax[_i].set_aspect(_s_y/_s_x)
_ax[_i].set_title(f'Component {_i}', color=color_set.to_rgba(_i),
fontweight='extra bold')
_xcolumn_name, _ycolumn_name = ([origins.columns[i] for i in _scan_axes])
if "R" in _xcolumn_name:
_ycolumn_name = origins.columns[3]
# try:
_x_ticks = origins[_xcolumn_name].to_numpy().ravel()[:_n_x]
_y_ticks = origins[_ycolumn_name].to_numpy().ravel()[::_n_x]
_pos_x = _ax[_i].get_xticks()
_pos_y = _ax[_i].get_yticks()
_xlabels = [str(x) for x in _x_ticks[::int(np.ceil(_n_x/len(_pos_x)))]]
_ylabels = [str(y) for y in _y_ticks[::int(np.ceil(_n_y/len(_pos_y)))]]
_ax[_i].set_xticks(_pos_x)
_ax[_i].set_xticklabels(_xlabels, rotation=45,
ha="right", fontstretch=50)
_ax[_i].set_yticks(_pos_y)
_ax[_i].set_yticklabels(_ylabels, rotation=0,
ha="right", fontstretch=50)
_ax[_i].set_xlabel(_xcolumn_name)
_ax[_i].set_ylabel(_ycolumn_name)
# except:
# pass
fig.suptitle('Heatmaps showing the abundance of individual components'
' throughout the scanned area.')
fig.canvas.mpl_connect('button_press_event', onclick)
# %%
boje = np.array(colormaps["tab10"].colors[:_n_components])
srednja = np.mean(_mix_reshaped, axis=(0,1))
my_mix = _mix_reshaped - srednja
najjaci = np.argmax(my_mix, axis=2)
konacna = boje[najjaci]
fig, ax = plt.subplots()
konac = ax.imshow(konacna, interpolation="blackman", filterrad=1)
legend_elements = []
for i in range(_n_components):
legend_elements.append(patches.Patch(label=f"component {i}",
facecolor=boje[i]))
ax.legend(handles=legend_elements, bbox_to_anchor=(1.3, 1.01))
ax.axis("off")
fig.suptitle("Showing the relative predominance of components throughout the map")
plt.show()
# %%
# =============================================================================
# saving some data for usage in other software (Origin, Excel..)
# =============================================================================
if True:#initialization["save_data"]:
_basic_mix = pd.DataFrame(
np.copy(mix),
columns=[f"mixing coeff. for the component {l}"
for l in np.arange(mix.shape[1])]
)
_save_filename_extension = (f"_{_n_components}NMFcomponents_from"
f".csv")
_save_filename_folder = '/'.join(x for x in filename.split('/')[:-1])+'/'\
+ filename.split('/')[-1][:-4]+'/'
if not os.path.exists(_save_filename_folder):
os.mkdir(_save_filename_folder)
_basic_mix.to_csv(
f"{_save_filename_folder}MixingCoeffs{_save_filename_extension}",
sep=';', index=False)
_save_components = pd.DataFrame(
components.T, index=sigma_kept,
columns=[f"Component{_i}" for _i in np.arange(_n_components)])
_save_components.index.name = 'Raman shift in cm-1'
_save_components.to_csv(
f"{_save_filename_folder}Components{_save_filename_extension}",
sep=';')