Skip to content

Latest commit

 

History

History
100 lines (77 loc) · 5.58 KB

data_preparation.md

File metadata and controls

100 lines (77 loc) · 5.58 KB

Data Preparation

Notes on Video Data Format

MMAction2 supports two types of data format: raw frames and video. The former is widely used in previous projects such as TSN. This is fast when SSD is available but fails to scale to the fast-growing datasets. (For example, the newest edition of Kinetics has 650K videos and the total frames will take up several TBs.) The latter saves much space but has to do the computation intensive video decoding at execution time To make video decoding faster, we support several efficient video loading libraries, such as decord, PyAV, etc.

Supported Datasets

The supported datasets are listed below. We provide shell scripts for data preparation under the path $MMACTION/tools/data/. To ease usage, we provide tutorials of data deployment for each dataset.

Now, you can switch to getting_started.md to train and test the model.

Getting Data

The following guide is helpful when you want to experiment with custom dataset. Similar to the datasets stated above, it is recommended organizing in $MMACTION/data/$DATASET.

Prepare videos

Please refer to the official website and/or the official script to prepare the videos. Note that the videos should be arranged in either

(1). A two-level directory organized by ${CLASS_NAME}/${VIDEO_ID}, which is recommended to be used for for action recognition datasets (such as UCF101 and Kinetics)

(2). A single-level directory, which is recommended to be used for for action detection datasets or those with multiple annotations per video (such as THUMOS14).

Extract frames

To extract frames and optical flow, dense_flow is needed. You can use the following command to extract frames.

python build_rawframes.py ${SRC_FOLDER} ${OUT_FOLDER} [--task ${TASK}] [--level ${LEVEL}] \
    [--num-worker ${NUM_WORKER}] [--flow-type ${FLOW_TYPE}] [--out-format ${OUT_FORMAT}] \
    [--ext ${EXT}] [--new-width ${NEW_WIDTH}] [--new-height ${NEW_HEIGHT}] [--new-short ${NEW_SHORT}]
    [--resume]
  • SRC_FOLDER: Folder of the original video.
  • OUT_FOLDER: Root folder where the extracted frames and optical flow store.
  • TASK: Extraction task indicating which kind of frames to extract. Allowed choices are rgb, flow, both.
  • LEVEL: Directory level. 1 for the single-level directory or 2 for the two-level directory.
  • NUM_WORKER: Number of workers to build rawframes.
  • FLOW_TYPE: Flow type to extract, e.g., None, tvl1, warp_tvl1, farn, brox.
  • OUT_FORMAT: Output format for extracted frames, e.g., jpg, h5, png.
  • EXT: Video file extension, e.g., avi, mp4.
  • NEW_WIDTH: Resized image width of output.
  • NEW_HEIGHT: Resized image height of output.
  • NEW_SHORT: Resized image short side length keeping ratio.
  • --resume: Whether to resume optical flow extraction instead of overwriting.

The recommended practice is

  1. set $OUT_FOLDER to be a folder located in SSD.
  2. symlink the link $OUT_FOLDER to $MMACTION/data/$DATASET/rawframes.
ln -s ${YOUR_FOLDER} $MMACTION/data/$DATASET/rawframes

Generate file list

We provide a convenient script to generate annotation file list. You can use the following command to extract frames.

cd $MMACTION
python tools/data/build_file_list.py ${DATASET} ${SRC_FOLDER} [--rgb-prefix ${RGB_PREFIX}] \
    [--flow-x-prefix ${FLOW_X_PREFIX}] [--flow-y-prefix ${FLOW_Y_PREFIX}] [--num-split ${NUM_SPLIT}] \
    [--subset ${SUBSET}] [--level ${LEVEL}] [--format ${FORMAT}] [--out-root-path ${OUT_ROOT_PATH}] \
    [--shuffle]
  • DATASET: Dataset to be prepared, e.g., ucf101, kinetics400, thumos14, sthv1, sthv2, etc.
  • SRC_FOLDER: Folder of the corresponding data format:
    • "$MMACTION/data/$DATASET/rawframes" if --format rawframes.
    • "$MMACTION/data/$DATASET/videos" if --format videos.
  • RGB_PREFIX: Name prefix of rgb frames.
  • FLOW_X_PREFIX: Name prefix of x flow frames.
  • FLOW_Y_PREFIX: Name prefix of y flow frames.
  • NUM_SPLIT: Number of split to file list.
  • SUBSET: Subset to generate file list. Allowed choice are train, val, test.
  • LEVEL: Directory level. 1 for the single-level directory or 2 for the two-level directory.
  • FORMAT: Source data format to generate file list. Allowed choices are rawframes, videos.
  • OUT_ROOT_PATH: Root path for output
  • --shuffle: Whether to shuffle the file list.