-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathgesture.py
230 lines (181 loc) · 7.02 KB
/
gesture.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import cv2
import numpy as np
import math
import time
from os import path
import pygame
from pygame.locals import *
import cPickle as pickle
from classifiers import MultiLayerPerceptron
def _on_exit(samples, labels,data_file='datasets/faces_training.pkl'):
# if we have collected some samples, dump them to file
print len(samples)
if len(samples) > 0:
# make sure we don't overwrite an existing file
if path.isfile(data_file):
# file already exists, construct new load_from_file
load_from_file, fileext = path.splitext(data_file)
offset = 0
while True:
file = load_from_file + "-" + str(offset) + fileext
if path.isfile(file):
offset += 1
else:
break
data_file = file
print data_file
# dump samples and labels to file
f = open(data_file, 'wb')
pickle.dump(samples, f)
pickle.dump(labels, f)
f.close()
print "Saved", len(samples), "samples to", data_file
#############################################################################
import cv2
import numpy as np
import copy
import math
# Environment:
# OS : Mac OS EL Capitan
# python: 3.5
# opencv: 2.4.13
# parameters
cap_region_x_begin=0.5 # start point/total width
cap_region_y_end=0.8 # start point/total width
threshold = 60 # BINARY threshold
blurValue = 41 # GaussianBlur parameter
bgSubThreshold = 50
# variables
isBgCaptured = 0 # bool, whether the background captured
triggerSwitch = False # if true, keyborad simulator works
def printThreshold(thr):
print("! Changed threshold to "+str(thr))
def removeBG(frame):
fgmask = bgModel.apply(frame)
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3))
fgmask = cv2.morphologyEx(fgmask, cv2.MORPH_OPEN, kernel)
#cv2.imshow("hhg",fgmask)
#kernel = np.ones((3, 3), np.uint8)
#fgmask = cv2.erode(fgmask, kernel, iterations=2)
cv2.imshow("yo",fgmask)
res = cv2.bitwise_and(frame, frame, mask=fgmask)
return res
camera = cv2.VideoCapture(0)
camera.set(10,200)
cv2.namedWindow('trackbar')
cv2.createTrackbar('trh1', 'trackbar', threshold, 100, printThreshold)
#pygame.init()
samples=[]
labels=[]
while(camera.isOpened()):
'''ret, img = cap.read()
cv2.rectangle(img,(400,400),(100,100),(0,255,0),0)
crop_img = img[100:400, 100:400]
grey = cv2.cvtColor(crop_img, cv2.COLOR_BGR2GRAY)
value = (35, 35)
blurred = cv2.GaussianBlur(grey, value, 0)
_, thresh1 = cv2.threshold(blurred, 111, 255,
cv2.THRESH_BINARY_INV+cv2.THRESH_OTSU)
cv2.imshow('Thresholded', thresh1)
cv2.imshow('Gesture', img)'''
ret, frame = camera.read()
threshold = cv2.getTrackbarPos('trh1', 'trackbar')
frame = cv2.bilateralFilter(frame, 5, 50, 100) # smoothing filter
frame = cv2.flip(frame, 1) # flip the frame horizontally
#cv2.imshow('yo',frame)
cv2.rectangle(frame, (int(cap_region_x_begin * frame.shape[1]*1.3), 0),
(frame.shape[1], int(cap_region_y_end * frame.shape[0]*0.7)), (255, 0, 0), 2)
cv2.imshow('original', frame)
# Main operation
if isBgCaptured == 1: # this part wont run until background captured
img = removeBG(frame)
img = img[0:int(cap_region_y_end * frame.shape[0]*0.7),
int(cap_region_x_begin * frame.shape[1]*1.3):frame.shape[1]] # clip the ROI
# convert the image into binary image
thresh1 = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
cv2.imshow('mask', thresh1)
#gamedisplay=pygame.display.set_mode((800,600))
#pygame.display.update()
'''for event in pygame.event.get():
#print event
if event.type == pygame.KEYDOWN:
#print "vubkvbvkj"
key_input = pygame.key.get_pressed()
if key_input[pygame.K_UP]:
text="victory"
print text
samples.append(thresh1.flatten())
labels.append(text)
elif key_input[pygame.K_DOWN]:
text="yo"
print text
samples.append(thresh1.flatten())
labels.append(text)
elif key_input[pygame.K_RIGHT]:
text="like"
print text
samples.append(thresh1.flatten())
labels.append(text)
elif key_input[pygame.K_LEFT]:
text="none"
print text
samples.append(thresh1.flatten())
labels.append(text)
elif key_input[pygame.K_x] or key_input[pygame.K_q]:
print 'exit'
_on_exit(samples,labels)
camera.release()
break
elif event.type == pygame.KEYUP:
print "1"'''
k = cv2.waitKey(10)
#print (k)
if k == ord('b'): # press 'b' to capture the background
bgModel = cv2.BackgroundSubtractorMOG2(0, bgSubThreshold)
isBgCaptured = 1
print '!!!Background Captured!!!'
elif k == ord('r'): # press 'r' to reset the background
bgModel = None
triggerSwitch = False
isBgCaptured = 0
print '!!!Reset BackGround!!!'
elif k == ord('n'):
triggerSwitch = True
print '!!!Trigger On!!!'
elif k == ord('a'):
text="Stone"
print text
samples.append(thresh1.flatten())
labels.append(text)
elif k == ord('s'):
text="Paper"
print text
samples.append(thresh1.flatten())
labels.append(text)
elif k == ord('d'):
text="Scissors"
print text
samples.append(thresh1.flatten())
labels.append(text)
elif k == ord('f'):
text="Spock"
print text
samples.append(thresh1.flatten())
labels.append(text)
elif k == ord('g'):
text="Lizard"
print text
samples.append(thresh1.flatten())
labels.append(text)
elif k == ord('h'):
text="None"
print text
samples.append(thresh1.flatten())
labels.append(text)
elif k==ord('i'):
print 'exit'
_on_exit(samples,labels)
camera.release()
break
elif k == 27:
exit(0)