forked from orchidas/Pitch-Tracking
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathyin_estimator.m
104 lines (82 loc) · 2.43 KB
/
yin_estimator.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
function [time, f0] = yin_estimator(x, fs, varargin)
%function that implements YIN algorithm for
%fundamental pitch tracking
%x - input audio signal
%fs - sampling rate
%time,f0 - time vector and associated fundamental frequencies estimated
%window size - we assume the minimum f0 to be 1/0.025 = 40Hz
win = round(0.025*fs);
N = length(x);
nframes = ceil(N/win);
%zero pad signal to have enough frames
x = [x, zeros(1,win*nframes - N)];
x_frame = zeros(nframes, win);
start = 1;
%break into windows
for i = 1:nframes
x_frame(i,:) = x(start:start + win - 1);
start = start + win;
end
%step 1 - calculate difference function
d = zeros(nframes,win);
x_temp = [x_frame, zeros(nframes,win)];
for tau = 0:win-1
for j = 1:win
d(:,tau+1) = d(:,tau+1) + (x_temp(:,j) - x_temp(:,j+tau)).^2;
end
end
%step 2 - cumulative mean normalised difference function
d_norm = zeros(nframes,win);
d_norm(:,1) = 1;
for i = 1:nframes
for tau = 1:win-1
d_norm(i,tau+1) = d(i,tau+1)/((1/tau) * sum(d(i,1:tau+1)));
end
end
% figure(1);
% subplot(211);
% plot(0:length(x)-1, reshape(d',1,length(x)));grid on;
% xlabel('Lags');
% ylabel('Difference function');
% subplot(212);
% plot(0:length(x)-1, reshape(d_norm',1,length(x)));grid on;
% xlabel('Lags');
% ylabel('Cumulative mean difference function');
%step 3 - absolute thresholding
lag = zeros(1,nframes);
th = 0.1;
for i = 1:nframes
l = find(d_norm(i,:) < th,1);
if(isempty(l) == 1)
[v,l] = min(d_norm(i,:));
end
lag(i) = l;
end
%step 4 - parabolic interpolation
period = zeros(1,nframes);
time = zeros(nframes,win);
f0 = zeros(nframes,win);
start = 1;
for i = 1:nframes
if(lag(i) > 1 && lag(i) < win)
alpha = d_norm(i,lag(i)-1);
beta = d_norm(i,lag(i));
gamma = d_norm(i,lag(i)+1);
peak = 0.5*(alpha - gamma)/(alpha - 2*beta + gamma);
%ordinate needs to be calculated from d and not d_norm - see paper
%ordinate = d(i,lag(i)) - 0.25*(d(i,lag(i)-1) - d(i,lag(i)+1))*peak;
else
peak = 0;
end
%1 needs to be subtracted from 1 due to matlab's indexing nature
period(i) = (lag(i)-1) + peak;
f0(i,:) = fs/period(i)*ones(1,win);
time(i,:) = ((i-1)*win:i*win-1)/fs;
end
%for silent frames estimated frequency should be 0Hz
if ~isempty(varargin)
[f0] = silent_frame_classification(x_frame, f0);
end
f0 = reshape(f0',1,nframes*win);
time = reshape(time',1,nframes*win);
end