Skip to content

Latest commit

 

History

History
173 lines (108 loc) · 6.99 KB

README.md

File metadata and controls

173 lines (108 loc) · 6.99 KB

Matrix

Simplified Rust version of Matrix (Last update: 2018.04.29)

Created for ShanghaiTech SIST new students' manual. Also uploaded in https://github.com/SIST-Manual/Matrix/tree/master/Rust.

Goal

  • Matrix calcluation
  • Generics
  • Standard operators, e.g., +

Description

Matrices are widely used both in mathematics and computer sciences, such as game thoery and economics. In this homework, you will implement a module for matrix calculation.

Background

Syntax of Matrices

  • Matrix is defined in Backus-Naur Form, see BNF Wiki.
  • In case you don't know matrix or linear algebra well, search on internet,it is not too diffcult to understand. Programs are used to solve real-world problems. However, to understand the problems, you may have to learn some domain knowledge related to the problems.
Matrix::= "[" Rows "]" | "[" "]"
Rows::= Row | Row ";" Rows
Row::= element | element "," Row
element::= integer | floating | generic types

Howework Specification

Implement a struct Matrix with generic type parameter T for representing matrix and implement the following operations for the Matrix struct.

  • Creating

    • Matrix instance can be created by calling Matrix::new(num_row, num_col, &[data]), implement new for Matrix with Copy trait. You do not need to check if the size of data matches the dimension.

    • Matrix instance can be created by parsing a string. Implement FromStr trait so that we can generate a matrix using x = s.parse::<Matrix<T>>(), where s is a string in Matrix syntax allowing white space " " and T is the type parameter for Matrix which is specified when calling parse. If the string s does not follow the Matrix syntax, return Result::Err(ParseMatrixError) where ParseMatrixError is a enum defined as follow.

    • Define a enum called ParseMatrixError as follow:

      #[derive(Debug, Clone, PartialEq, Eq)]
      pub enum ParseMatrixError {
          WrongBracketFormat,
          ColumnsNotAligned,
          ParseNumberError,
      }

      If an error occurred when parsing the string, return one type of error in ParseMatrixError. When the first and the last character in the whitespace-trimmed string is not [ and ], return WrongBracketFormat. If the matrix has different number of elements in all rows, return ColumnsNotAligned. If a number cannot be extracted from an element token, return ParseNumberError.

  • Output

    • To output the matrix in Matrix syntax, implement Display trait for Matrix. There is no whitespace allowed in the output.
  • Operators: +, -

    • Implement for Matrix with all generic types with the bound of std::ops::Add<Output=T> (or Sub) and Copy.

    • Panic if the dimensions of the two input matrices are not compatible for the operation.

    • You need to implement all functionalities for these two operators, e.g. doing addition between matrix & matrix, matrix & scalar.

    • You need to implement for both reference and non-reference operands.

      • Hint: possible implementations:

        impl<'a, T: Add<Output = T> + Copy> Add for &'a Matrix<T>
        impl<'a, T: Add<Output = T> + Copy> Add<Matrix<T>> for &'a Matrix<T>
        impl<'a, T: Add<Output = T> + Copy> Add<&'a Matrix<T>> for Matrix<T>
        impl<T: Add<Output = T> + Copy> Add for Matrix<T>
      • Hint: Try not to copy-pase your code everywhere. It is rather a horrible practice to write too many duplicated codes in programming. Implement one and make others call that one.

  • Operator *

    • Specifications are based on + and -.
    • Mulplication between two matrices are different from that of addition or subtraction, so read Wikipedia carefully before writing code. You may need the trait bound of both std::ops::Mul<Output=T> and std::ops::Add<Output=T>.
  • Operator /

    • Dividing between integers may cause rounding and thus lead to imprecise results. Therefore, convert all the input values to f64 and your output should be Matrix<f64>.
    • You still need to implement for matrix & scalar and different reference types.
  • Operator ==

    • You can simply implement this by utilizing rust compiler and derive PartialEq or Eq trait on defining Matrix struct. No need to bother write one by yourself unless your implementation is special.
  • is_identity

  • This function checks if a matrix is an identity matrix.

  • Since you cannot know the identity value of a generic type, you only need to implement this for all the generic types: i8 i16 i32 i64 isize u8 u16 u32 u64 usize f32 f64.

    • Hint: Again, try not to copy-paste. Macro in rust is a useful tool in doing batch implementation.
  • is_square

    • This function checks if a matrix is a square matrix. Implement this function for all generic type parameters.
  • transposition

    • This function returns the transposition of a matrix. Implement this function for all generic type parameters.
  • index

    • Implement std::ops::Index and std::ops::IndexMut traits. The index argument is of type (usize, usize). Return a reference to the corresponding cell in the matrix. Implement this for all generic types.

Example

let _x = " [1,2,3; 4,5,6; 7,8,9]".parse::<Matrix<i32>>(); // can have white space
assert_eq!(Ok(Matrix::new(3, 3, &[1,2,3,4,5,6,7,8,9])), _x);
// should be the same with another way
let mut x = _x.unwrap();
assert_eq!(format!("{}", x), "[1,2,3;4,5,6;7,8,9]");
// the output does not contain any white space

let mut t;
t = "1,2,3; 4,5,6; 7,8,9]".parse::<Matrix<i32>>();
assert_eq!(Err(ParseMatrixError::WrongBracketFormat), t);

t = "[1,2,x; 4,5,6; 7,8,9]".parse::<Matrix<i32>>();
assert_eq!(Err(ParseMatrixError::ParseNumberError), t);

t = "[1,2,; 4,5,6; 7,8,9]".parse::<Matrix<i32>>();
assert_eq!(Err(ParseMatrixError::ParseNumberError), t);

t = "[1,2; 4,5,6; 7,8,9]".parse::<Matrix<i32>>();
assert_eq!(Err(ParseMatrixError::ColumnsNotAligned), t);

let y = "[0,1,2; 3,4,5; 6,7,8]".parse::<Matrix<i32>>().unwrap();
let mut z;
z = &x + &y;
assert_eq!(format!("{}", z), "[1,3,5;7,9,11;13,15,17]");

z = &x - &y;
assert_eq!(format!("{}", z), "[1,1,1;1,1,1;1,1,1]");

z = &x * 2;
assert_eq!(format!("{}", z), "[2,4,6;8,10,12;14,16,18]");

z = &x * &y;
assert_eq!(format!("{}", z), "[24,30,36;51,66,81;78,102,126]");

assert_eq!(format!("{}", &z / 2), "[12,15,18;25.5,33,40.5;39,51,63]");

assert_eq!(x == y, false);

assert!(x == "[1,2,3; 4,5,6;7,8,9]".parse::<Matrix<i32>>().unwrap());

assert_eq!(x.is_identity(), false);

assert!("[1,0,0,0; 0,1,0,0; 0,0,1,0; 0,0,0,1]".parse::<Matrix<f64>>().unwrap().is_identity());

assert!(x.is_square());

assert!("[1,2,3,4; 0,1,4,0; 0,0,1,0; 0,0,0,1]".parse::<Matrix<i32>>().unwrap().is_square());

assert_eq!(x[(2,1)], 8);

x[(1,2)] = 0;
assert_eq!(format!("{}", x), "[1,2,3;4,5,0;7,8,9]");

let m = Matrix::new(2, 3, &[-2, -1, 0, 1, 2, 3]);
assert_eq!(m.transposition(), Matrix::new(3, 2, &[-2, 1, -1, 2, 0, 3]));