标签(空格分隔): LeetCode
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/
题目地址:https://leetcode.com/problems/split-array-into-consecutive-subsequences/description/
You are given an integer array sorted in ascending order (may contain duplicates), you need to split them into several subsequences, where each subsequences consist of at least 3 consecutive integers. Return whether you can make such a split.
Example 1:
Input: [1,2,3,3,4,5]
Output: True
Explanation:
You can split them into two consecutive subsequences :
1, 2, 3
3, 4, 5
Example 2:
Input: [1,2,3,3,4,4,5,5]
Output: True
Explanation:
You can split them into two consecutive subsequences :
1, 2, 3, 4, 5
3, 4, 5
Example 3:
Input: [1,2,3,4,4,5]
Output: False
Note:
- The length of the input is in range of [1, 10000]
把一个升序的数组,分割成几个连续的递增的整数序列。如果能分割,且分割后的每个序列的长度都至少为3,那么认为成功,否则失败。
这就是所谓的扑克牌算法,必须全部弄成“顺子”。一个“顺子”至少3张连续的牌。方法是使用优先级队列,优先把当前的牌放入到更短的“顺子”里(贪心)。
这个题的思想就是贪心+优先级队列
首先判断以(num-1)为结尾的序列是否存在,
如果存在,获取长度最小值len并出栈,创建以num为结尾的数组,并设置长度为len + 1,推入优先队列;
如果不存在,创建新的序列,以num为结尾,并且长度为1,推入优先队列,创建新的键值对(num,currentPriorityQueue)推入map中。
1,2,3,3,4,4,5,5
num last len current map
1 null->(0,[ ]) 0 (1, [1]) (0,[ ] ) (1, [1])
2 (1, [1]) 1 (2, [2]) (0,[ ] ) (1, [ ])(2, [2])
3 (2, [2]) 2 (3, [3]) (0,[ ] ) (1, [ ])(2, [ ])(3, [3])
3 (2, [ ]) 0 (3, [1]) (0,[ ] ) (1, [ ])(2, [ ])(3, [3])(3, [1])
4 (3, [1]) 1 (4, [2]) (0,[ ] ) (1, [ ])(2, [ ])(3, [3])(3, [ ])(4, [2])
4 (3, [3]) 3 (4, [4]) (0,[ ] ) (1, [ ])(2, [ ])(3, [ ])(3, [ ])(4, [2])(4, [4])
5 (4, [2]) 2 (5, [3]) (0,[ ] ) (1, [ ])(2, [ ])(3, [ ])(3, [ ])(4, [ ])(4, [4])(5, [3])
5 (4, [4]) 4 (5, [5]) (0,[ ] ) (1, [ ])(2, [ ])(3, [ ])(3, [ ])(4, [ ])(4, [ ])(5, [3])(5, [5])
代码如下:
class Solution(object):
def isPossible(self, nums):
"""
:type nums: List[int]
:rtype: bool
"""
saved = collections.defaultdict(list)
for num in nums:
last = saved[num - 1]
_len = 0 if (not last) else heapq.heappop(last)
current = saved[num]
heapq.heappush(current, _len + 1)
for values in saved.values():
for v in values:
if v < 3:
return False
return True
参考资料:
2018 年 8 月 29 日 ———— 还是要早起才行啊!