forked from THUDM/GLM-130B
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerate.py
215 lines (179 loc) · 7.88 KB
/
generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import os
import torch
import stat
import re
from functools import partial
from typing import List, Tuple
from SwissArmyTransformer import mpu
from evaluation.model import batch_filling_sequence
from generation import BeamSearchStrategy, BaseStrategy
from SwissArmyTransformer.generation.utils import timed_name, generate_continually
from initialize import initialize, initialize_model_and_tokenizer
def add_generation_specific_args(parser):
parser.add_argument("--sampling-strategy", type=str, default="BaseStrategy", help="Type of sampling strategy.")
parser.add_argument("--min-gen-length", type=int, default=0, help="The minimum length each blank should generate.")
parser.add_argument(
"--print-all-beams", action="store_true", help="Print all output generated by beam search strategy."
)
def isEnglish(s):
try:
s.encode(encoding="utf-8").decode("ascii")
except UnicodeDecodeError:
return False
else:
return True
def get_masks_and_position_ids(seq, mask_position, max_gen_length, gmask=False):
context_length = seq.shape[1]
tokens = torch.nn.functional.pad(seq, (0, max_gen_length), mode="constant", value=-1)
attention_mask = torch.ones((1, tokens.shape[-1], tokens.shape[-1]), device=tokens.device)
attention_mask.tril_()
attention_mask[..., : context_length - 1] = 1
attention_mask.unsqueeze_(1)
attention_mask = (attention_mask < 0.5).bool()
position_ids = torch.arange(tokens.shape[-1], dtype=torch.long, device=tokens.device)
if not gmask:
position_ids[context_length - 1 :] = mask_position
position_ids = position_ids.unsqueeze(0)
return tokens, attention_mask, position_ids
def fill_blanks(raw_text: str, model, tokenizer, strategy) -> Tuple[List[str], List[str], List[List[str]]]:
# add MASK
generation_mask = "[gMASK]"
if "[MASK]" in raw_text:
generation_mask = "[MASK]"
elif "[sMASK]" in raw_text:
generation_mask = "[sMASK]"
use_gmask = "[MASK]" not in raw_text and "[sMASK]" not in raw_text
mask_pattern = r"\[[sg]?MASK\]"
text_list = re.split(mask_pattern, raw_text)
pattern_list = re.compile(mask_pattern).findall(raw_text)
seq = []
for i in range(len(pattern_list)):
pattern = pattern_list[i]
sub_text = text_list[i]
seq.extend(tokenizer.tokenize(sub_text))
seq.append(tokenizer.get_command(pattern))
seq.extend(tokenizer.tokenize(text_list[-1]))
if "MASK]" not in raw_text:
seq += [tokenizer.get_command(generation_mask)]
raw_text += " " + generation_mask
if not raw_text.endswith("MASK]"):
seq = seq + [tokenizer.get_command("eos")]
if mpu.get_model_parallel_rank() == 0:
print("\nInput: {}\n".format(raw_text))
if len(seq) > args.max_sequence_length:
raise ValueError("text too long.")
# generation
is_english = isEnglish(raw_text)
output_list = [seq]
num_output = args.num_beams if args.sampling_strategy == "BeamSearchStrategy" else 1
last_pos, answers, answers_with_style, blanks = (
[0] * num_output,
["" for _ in range(num_output)],
["" for _ in range(num_output)],
[[] for _ in range(num_output)],
)
# continually detect the first mark position
while True:
seq = output_list[0]
# detect mask position
mask_token = tokenizer.get_command(generation_mask)
if mask_token not in seq:
break
mask_position = seq.index(mask_token)
output_list = []
input_seq = torch.cuda.LongTensor(
[seq + [tokenizer.get_command("sop")]],
device=args.device,
)
output, _ = batch_filling_sequence(
model,
input_seq,
torch.cuda.LongTensor([input_seq.shape[-1]], device=args.device),
strategy=strategy,
get_masks_and_position_ids=partial(
get_masks_and_position_ids,
mask_position=mask_position,
max_gen_length=args.out_seq_length - input_seq.shape[-1],
gmask=use_gmask,
),
)
if isinstance(output, torch.Tensor): # different strategies
output = output.tolist()
output = output[0] # batch_size = 1
output_list.extend(output)
# clip -1s and fill back generated things into seq
for i in range(len(output_list)):
output = output_list[i].tolist() if isinstance(output_list[i], torch.Tensor) else output_list[i]
try:
unfinished = output.index(-1)
except ValueError:
unfinished = len(output)
if output[unfinished - 1] in strategy.end_tokens:
unfinished -= 1
bog = output.index(tokenizer.get_command("sop"))
prefix = tokenizer.detokenize(output[last_pos[i] : mask_position])
blank = tokenizer.detokenize(output[bog + 1 : unfinished])
answers_with_style[i] += (
prefix
+ (" " if is_english else "")
+ ("\033[4m" if use_gmask else "\x1b[0;32m\033[4m")
+ blank
+ ("\033[0m" if use_gmask else "\033[0m\x1b[0m")
+ (" " if is_english else "")
)
blanks[i].append(blank)
last_pos[i] = mask_position + unfinished - (bog + 1)
output_list[i] = output[:mask_position] + output[bog + 1 : unfinished] + output[mask_position + 1 : bog]
for i, output in enumerate(output_list):
if output[-1] == tokenizer.get_command("eos"):
output = output[:-1]
answers_with_style[i] += tokenizer.detokenize(output[last_pos[i] :])
answers[i] = tokenizer.detokenize(output)
return answers, answers_with_style, blanks
def main(args):
model, tokenizer = initialize_model_and_tokenizer(args)
end_tokens = [tokenizer.get_command("eop"), tokenizer.get_command("eos")]
if args.sampling_strategy == "BaseStrategy":
strategy = BaseStrategy(
batch_size=1, temperature=args.temperature, top_k=args.top_k, top_p=args.top_p, end_tokens=end_tokens
)
elif args.sampling_strategy == "BeamSearchStrategy":
strategy = BeamSearchStrategy(
1,
args.num_beams,
length_penalty=args.length_penalty,
consider_end=True,
end_tokens=end_tokens,
no_repeat_ngram_size=args.no_repeat_ngram_size,
min_gen_length=args.min_gen_length,
)
else:
raise ValueError(f"unknown strategy {args.sampling_strategy}")
def process(raw_text):
if args.with_id:
query_id, raw_text = raw_text.split("\t")
answers, answers_with_style, blanks = fill_blanks(raw_text, model, tokenizer, strategy)
# save
if args.with_id:
full_path = os.path.join(args.output_path, query_id + ".txt")
else:
prefix = raw_text.replace("/", "")[:20]
full_path = timed_name(prefix, ".txt", args.output_path)
if mpu.get_model_parallel_rank() == 0:
if args.print_all_beams and len(answers) > 1:
for idx, answer_with_style in enumerate(answers_with_style):
print(f"Output beam {idx}:", answer_with_style) # print the first.
if len(answer_with_style) > 120:
print("")
else:
print(f"Output:", answers_with_style[0]) # print the first.
with open(full_path, "w", encoding="utf-8") as fout:
for answer in answers:
fout.write(answer + "\n")
os.chmod(full_path, stat.S_IRWXO + stat.S_IRWXG + stat.S_IRWXU)
os.makedirs(args.output_path, exist_ok=True)
generate_continually(process, args.input_source)
if __name__ == "__main__":
args = initialize(extra_args_provider=add_generation_specific_args)
with torch.no_grad():
main(args)