forked from DayBreak-u/chineseocr_lite
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
123 lines (103 loc) · 4.26 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import numpy as np
import cv2
from PIL import Image
def rotate_cut_img(im, degree, x_center , y_center, w, h, leftAdjust=False, rightAdjust=False, alph=0.2):
# degree_ = degree * 180.0 / np.pi
# print(degree_)
right = 0
left = 0
if rightAdjust:
right = 1
if leftAdjust:
left = 1
box = (max(1, x_center - w / 2 - left * alph * (w / 2)) ##xmin
, y_center - h / 2, ##ymin
min(x_center + w / 2 + right * alph * (w / 2), im.size[0] - 1) ##xmax
, y_center + h / 2) ##ymax
newW = box[2] - box[0]
newH = box[3] - box[1]
tmpImg = im.rotate(degree, center=(x_center, y_center)).crop(box)
return tmpImg, newW, newH
def crop_rect(img, rect ,alph = 0.15):
img = np.asarray(img)
# get the parameter of the small rectangle
# print("rect!")
# print(rect)
center, size, angle = rect[0], rect[1], rect[2]
min_size = min(size)
if(angle>-45):
center, size = tuple(map(int, center)), tuple(map(int, size))
# angle-=270
size = ( int(size[0] + min_size*alph ) , int(size[1] + min_size*alph) )
height, width = img.shape[0], img.shape[1]
M = cv2.getRotationMatrix2D(center, angle, 1)
# size = tuple([int(rect[1][1]), int(rect[1][0])])
img_rot = cv2.warpAffine(img, M, (width, height))
# cv2.imwrite("debug_im/img_rot.jpg", img_rot)
img_crop = cv2.getRectSubPix(img_rot, size, center)
else:
center=tuple(map(int,center))
size = tuple([int(rect[1][1]), int(rect[1][0])])
size = ( int(size[0] + min_size*alph) ,int(size[1] + min_size*alph) )
angle -= 270
height, width = img.shape[0], img.shape[1]
M = cv2.getRotationMatrix2D(center, angle, 1)
img_rot = cv2.warpAffine(img, M, (width, height))
# cv2.imwrite("debug_im/img_rot.jpg", img_rot)
img_crop = cv2.getRectSubPix(img_rot, size, center)
img_crop = Image.fromarray(img_crop)
return img_crop
def draw_bbox(img_path, result, color=(255, 0, 0),thickness=2):
if isinstance(img_path, str):
img_path = cv2.imread(img_path)
# img_path = cv2.cvtColor(img_path, cv2.COLOR_BGR2RGB)
img_path = img_path.copy()
for point in result:
point = point.astype(int)
cv2.line(img_path, tuple(point[0]), tuple(point[1]), color, thickness)
cv2.line(img_path, tuple(point[1]), tuple(point[2]), color, thickness)
cv2.line(img_path, tuple(point[2]), tuple(point[3]), color, thickness)
cv2.line(img_path, tuple(point[3]), tuple(point[0]), color, thickness)
return img_path
def sort_box(boxs):
res = []
for box in boxs:
# box = [x if x>0 else 0 for x in box ]
x1, y1, x2, y2, x3, y3, x4, y4 = box[:8]
newBox = [[x1, y1], [x2, y2], [x3, y3], [x4, y4]]
## sort x
newBox = sorted(newBox, key=lambda x: x[0])
x1, y1 = sorted(newBox[:2], key=lambda x: x[1])[0]
index = newBox.index([x1, y1])
newBox.pop(index)
newBox = sorted(newBox, key=lambda x: -x[1])
x4, y4 = sorted(newBox[:2], key=lambda x: x[0])[0]
index = newBox.index([x4, y4])
newBox.pop(index)
newBox = sorted(newBox, key=lambda x: -x[0])
x2, y2 = sorted(newBox[:2], key=lambda x: x[1])[0]
index = newBox.index([x2, y2])
newBox.pop(index)
newBox = sorted(newBox, key=lambda x: -x[1])
x3, y3 = sorted(newBox[:2], key=lambda x: x[0])[0]
res.append([x1, y1, x2, y2, x3, y3, x4, y4])
return res
def solve(box):
"""
绕 cx,cy点 w,h 旋转 angle 的坐标
x = cx-w/2
y = cy-h/2
x1-cx = -w/2*cos(angle) +h/2*sin(angle)
y1 -cy= -w/2*sin(angle) -h/2*cos(angle)
h(x1-cx) = -wh/2*cos(angle) +hh/2*sin(angle)
w(y1 -cy)= -ww/2*sin(angle) -hw/2*cos(angle)
(hh+ww)/2sin(angle) = h(x1-cx)-w(y1 -cy)
"""
x1, y1, x2, y2, x3, y3, x4, y4 = box[:8]
cx = (x1 + x3 + x2 + x4) / 4.0
cy = (y1 + y3 + y4 + y2) / 4.0
w = (np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2) + np.sqrt((x3 - x4) ** 2 + (y3 - y4) ** 2)) / 2
h = (np.sqrt((x2 - x3) ** 2 + (y2 - y3) ** 2) + np.sqrt((x1 - x4) ** 2 + (y1 - y4) ** 2)) / 2
sinA = (h * (x1 - cx) - w * (y1 - cy)) * 1.0 / (h * h + w * w) * 2
angle = np.arcsin(sinA)
return angle, w, h, cx, cy