Skip to content

Latest commit

 

History

History
112 lines (102 loc) · 2.71 KB

README.md

File metadata and controls

112 lines (102 loc) · 2.71 KB

Automatic Network Pruning via Hilbert-Schmidt Independence Criterion Lasso under Information Bottleneck Principle

Automatic Network Pruning via Hilbert-Schmidt Independence Criterion Lasso under Information Bottleneck Principle Song Guo, Lei Zhang, Xiawu Zheng, Yan Wang, Yuchao Li, Fei Chao, ShengChuan Zhang, Chenglin Wu, Rongrong Ji ICCV 2023

Model Pruning

1. VGG-16

pruning ratio (FLOPs): 66%

python main.py \
--model vgg16\
--dataset cifar10\
--target 107000000 \
--ckpt [pre-trained model dir] \
--data_path [dataset path]\
--omega 40\
--tolerance 0.01\
--alpha 5e-5
2. ResNet56

pruning ratio (FLOPs): 55%

python main.py \
--model resnet56\
--dataset cifar10\
--target 57000000 \
--ckpt [pre-trained model dir] \
--data_path [dataset path]\
--omega 5\
--tolerance 0.01\
--alpha 8e-4
3. ResNet110

pruning ratio (FLOPs): 63%

python main.py \
--model resnet110\
--dataset cifar10\
--target 96000000 \
--ckpt [pre-trained model dir] \
--data_path [dataset path]\
--omega 5\
--tolerance 0.01\
--alpha 8e-9
4. GoogLeNet

pruning ratio (FLOPs): 63%

python main.py \
--model googlenet\
--dataset cifar10\
--target 568000000 \
--ckpt [pre-trained model dir] \
--data_path [dataset path]\
--omega 9\
--tolerance 0.01\
--alpha 4e-8
5. ResNet50

pruning ratio (FLOPs): 62%

python main.py \
--model resnet50\
--dataset imagenet\
--target 1550000000 \
--ckpt [pre-trained model dir] \
--data_path [dataset path]\
--omega 1\
--tolerance 0.01\
--alpha 7e-5

Model Training

1. VGG-16
python train.py \
--model vgg16\
--dataset cifar10\
--lr 0.1\
--batch_size 256 \
--ckpt_path [pruned model dir]\
--data_path [dataset path]
2. ResNet-50
python train.py \
--model resnet50\
--dataset imagenet\
--lr 0.01\
--batch_size 128 \
--ckpt_path [pruned model dir]\
--data_path [dataset path]

Pre-trained Models

Additionally, we provide the pre-trained models used in our experiments.

CIFAR-10:

Vgg-16 | ResNet56 | ResNet110
| GoogLeNet

ImageNet:

ResNet50

Acknowledgments

Our implementation partially reuses Lasso's code | HRank's code | ITPruner's code.