Skip to content

suiuko/LLEN-SLAM

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

21 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

 

LLEN-SLAM

基于弱光增强的SLAM

P_com

💡 News 新闻

  • 2024.10.03 V2.3 on Epoch 870/1500, have PSNR: 26087951, SSIM: 0.793044 on SID
  • 2024.10.03 For the SID, SMID, SDSD data sets, we reworked these data sets.
  • 2024.09.26 V2.3 on Epoch 370/1500, have PSNR: 28.329210, SSIM: 0.877992 on LOL_v2
  • 2024.09.23 V2.1.1 version in epoch150, PSNR:25.5085, SSIM:0.8311 on LOL_v1
  • 2024.09.21 V2.0-6variate version in epoch150, PSNR:25.429, SSIM:0.8292
  • 2024.09.18 V1.5 version in epoch150, PSNR:25.39
  • 2024.09.15 V1.4 version in epoch150, PSNR:24.97, SSIM:0.811
  • 2024.09.03 🌟 The first version completed training and testing, PSNR: 25.441431, SSIM: 0.824064. The input conversion to LAB is done in this version. Good results were achieved.
  • 2024.08.19 The initial model was completed, and compared with different low-light models, the effect was only 20.9. Other models were tested simultaneously (avg:21.5), with a difference of 0.6 points.
  • 2024.08.08 project startup 🎈

⚙ module 模型组件

🖼 Visual Comparison 视觉比较

P_com1

🧾 Weights and Results

Ours

Folder (test datasets) PSNR SSIM LPIPS Results Weights Path
(LOLv1)
v1
25.441431 0.824064 ** **
(LOLv2)
v2
28.329210 0.877992 ** **

Compare LOLv1 datasets

It should be noted that the following assessment is not fine-tuned and is conducted directly after training.

Model name PSNR SSIM LPIPS Weights Path
Ours_v1 25.441431 0.824064 X LOLv1/net_g_1500.pth
HVI-CIDNet 21.61 0.793 0.217 LOLv1\My_model\epoch_best.pth
retinexformer 21.798 0.802 X LOLv1\My_model\best_psnr_21.96_27000.pth
URetinex-Net 21.32(Official) X X LOLv1\Official_model\ckpt
GASD 26.232 0.8519 X LOLv1\My_model
LYT—NET 25.4462 0.8307 X LOLv1\My_model
KinD++ 15.6506 0.5079 0.2555 LOLv1\My_model
Diffusion Low Light 21.651 0.8056 0.1768 LOLv1\My_model

You can get pth on Google drive

Compare LOLv1 datasets official numerical value

Model name PSNR SSIM LPIPS
Ours_v1 20.9049 0.7718 X
HVI-CIDNet 23.500 0.8703 0.1053
retinexformer 25.154 0.8445 X
URetinex-Net 21.32 X X
GSAD 27.623 0.874 0.0912
LYT—NET 26.6280 0.8349 X
KinD++ X X X
Diffusion Low Light 26.047 0.8445 0.1184

Training log

Model name comment
Ours_v1 epoch:1500
Ours_v2 epoch:1500
HVI-CIDNet epoch:1000
retinexformer epoch:683 & iter:41K
URetinex-Net -
GSAD First training 1000K;Second training 2000K
LYT—NET epoch:1500
KinD++ -

check log

Log files are stored in ./Compare_models/ different models/ LOLv1/info

🌑 0. My environment

  • Ubuntu 20.04.6
  • AMD R9 5900HX
  • RTX 3080 Laptop 16G
  • RAM 32G

🌑 1. Get Started

  • Python 3.9
  • pytorch-cuda=11.8

(1) Create Conda Environment

conda create --name LLEN python=3.9 -y
conda activate LLEN

(2) Clone Repo

git clone https://github.com/suiuko/LLEN-SLAM.git

(3) Install Dependencies

cd LLEN-SLAM
pip install -r requirements.txt

Data Preparation

Currently only the LOLv1 database is tested

Note: (1) For the SID, SMID, SDSD data sets, we reworked these data sets. Convert the .npy file to an RGB file, which can be downloaded if you want to use the reconstructed data set.

datasets (click to expand)
├── datasets
	├── DICM
	├── LIME
	├── LOLdataset
		├── Train
			├──low
			├──high
		├── Test
			├──low
			├──high

🌒 2. Testing

🌒 3. Training

# activate the enviroment
conda activate LLEN

# LOL-v1
python3 train.py 

About

基于弱光增强的SLAM

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages