基于弱光增强的SLAM
- 2024.10.03 V2.3 on Epoch 870/1500, have PSNR: 26087951, SSIM: 0.793044 on SID
- 2024.10.03 For the SID, SMID, SDSD data sets, we reworked these data sets.
- 2024.09.26 V2.3 on Epoch 370/1500, have PSNR: 28.329210, SSIM: 0.877992 on LOL_v2
- 2024.09.23 V2.1.1 version in epoch150, PSNR:25.5085, SSIM:0.8311 on LOL_v1
- 2024.09.21 V2.0-6variate version in epoch150, PSNR:25.429, SSIM:0.8292
- 2024.09.18 V1.5 version in epoch150, PSNR:25.39
- 2024.09.15 V1.4 version in epoch150, PSNR:24.97, SSIM:0.811
- 2024.09.03 🌟 The first version completed training and testing, PSNR: 25.441431, SSIM: 0.824064. The input conversion to LAB is done in this version. Good results were achieved.
- 2024.08.19 The initial model was completed, and compared with different low-light models, the effect was only 20.9. Other models were tested simultaneously (avg:21.5), with a difference of 0.6 points.
- 2024.08.08 project startup 🎈
Folder (test datasets) | PSNR | SSIM | LPIPS | Results | Weights Path |
---|---|---|---|---|---|
(LOLv1) v1 |
25.441431 | 0.824064 | ** | ** | |
(LOLv2) v2 |
28.329210 | 0.877992 | ** | ** |
It should be noted that the following assessment is not fine-tuned and is conducted directly after training.
Model name | PSNR | SSIM | LPIPS | Weights Path |
---|---|---|---|---|
Ours_v1 | 25.441431 | 0.824064 | X | LOLv1/net_g_1500.pth |
HVI-CIDNet | 21.61 | 0.793 | 0.217 | LOLv1\My_model\epoch_best.pth |
retinexformer | 21.798 | 0.802 | X | LOLv1\My_model\best_psnr_21.96_27000.pth |
URetinex-Net | 21.32(Official) | X | X | LOLv1\Official_model\ckpt |
GASD | 26.232 | 0.8519 | X | |
LYT—NET | 25.4462 | 0.8307 | X | |
KinD++ | 15.6506 | 0.5079 | 0.2555 | |
Diffusion Low Light | 21.651 | 0.8056 | 0.1768 |
You can get pth on Google drive
Model name | PSNR | SSIM | LPIPS |
---|---|---|---|
Ours_v1 | 20.9049 | 0.7718 | X |
HVI-CIDNet | 23.500 | 0.8703 | 0.1053 |
retinexformer | 25.154 | 0.8445 | X |
URetinex-Net | 21.32 | X | X |
GSAD | 27.623 | 0.874 | 0.0912 |
LYT—NET | 26.6280 | 0.8349 | X |
KinD++ | X | X | X |
Diffusion Low Light | 26.047 | 0.8445 | 0.1184 |
Model name | comment |
---|---|
Ours_v1 | epoch:1500 |
Ours_v2 | epoch:1500 |
HVI-CIDNet | epoch:1000 |
retinexformer | epoch:683 & iter:41K |
URetinex-Net | - |
GSAD | First training 1000K;Second training 2000K |
LYT—NET | epoch:1500 |
KinD++ | - |
Log files are stored in ./Compare_models/ different models/ LOLv1/info
- Ubuntu 20.04.6
- AMD R9 5900HX
- RTX 3080 Laptop 16G
- RAM 32G
- Python 3.9
- pytorch-cuda=11.8
(1) Create Conda Environment
conda create --name LLEN python=3.9 -y
conda activate LLEN
(2) Clone Repo
git clone https://github.com/suiuko/LLEN-SLAM.git
(3) Install Dependencies
cd LLEN-SLAM
pip install -r requirements.txt
Currently only the LOLv1 database is tested
Note:
(1) For the SID, SMID, SDSD data sets, we reworked these data sets. Convert the .npy
file to an RGB file, which can be downloaded if you want to use the reconstructed data set.
datasets (click to expand)
├── datasets
├── DICM
├── LIME
├── LOLdataset
├── Train
├──low
├──high
├── Test
├──low
├──high
# activate the enviroment
conda activate LLEN
# LOL-v1
python3 train.py