-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathOpenRocket.ino
704 lines (583 loc) · 18.4 KB
/
OpenRocket.ino
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
/*
"9DOF Sensor Stick" hardware versions: SEN-10183, SEN-10321 and SEN-10724
ADXL345 : Accelerometer
HMC5843 : Magnetometer on SEN-10183 and SEN-10321
HMC5883L : Magnetometer on SEN-10724
ITG-3200 : Gyro
*/
#define HW__VERSION_CODE 10724 // SparkFun "9DOF Sensor Stick" version "SEN-10724" (HMC5883L magnetometer)
#define OUTPUT__BAUD_RATE 115200
#define OUTPUT__DATA_INTERVAL 20 // in milliseconds
#define WRITE__DATA_INTERVAL 1000 // in milliseconds
#define OUTPUT__MODE_SENSORS_CALIB 2 // Outputs calibrated sensor values for all 9 axes
#define OUTPUT__FORMAT_TEXT 0 // Outputs data as text
// Select your startup output mode and format here!
int output_mode = OUTPUT__MODE_SENSORS_CALIB;
int output_format = OUTPUT__FORMAT_TEXT;
// Select if serial continuous streaming output is enabled per default on startup.
#define OUTPUT__STARTUP_STREAM_ON true // true or false
// If set true, an error message will be output if we fail to read sensor data.
// Message format: "!ERR: reading <sensor>", followed by "\r\n".
boolean output_errors = false; // true or false
// SENSOR CALIBRATION
/*****************************************************************/
// How to calibrate? Read the tutorial at http://dev.qu.tu-berlin.de/projects/sf-razor-9dof-ahrs
// Put MIN/MAX and OFFSET readings for your board here!
// Accelerometer
// "accel x,y,z (min/max) = X_MIN/X_MAX Y_MIN/Y_MAX Z_MIN/Z_MAX"
#define ACCEL_X_MIN ((float) -268)
#define ACCEL_X_MAX ((float) 260)
#define ACCEL_Y_MIN ((float) -256)
#define ACCEL_Y_MAX ((float) 272)
#define ACCEL_Z_MIN ((float) -281)
#define ACCEL_Z_MAX ((float) 238)
// Magnetometer (standard calibration)
// "magn x,y,z (min/max) = X_MIN/X_MAX Y_MIN/Y_MAX Z_MIN/Z_MAX"
#define MAGN_X_MIN ((float) -250)
#define MAGN_X_MAX ((float) 354)
#define MAGN_Y_MIN ((float) -420)
#define MAGN_Y_MAX ((float) 220)
#define MAGN_Z_MIN ((float) -400)
#define MAGN_Z_MAX ((float) 248)
// Magnetometer (extended calibration)
// Uncommend to use extended magnetometer calibration (compensates hard & soft iron errors)
//#define CALIBRATION__MAGN_USE_EXTENDED true
//const float magn_ellipsoid_center[3] = {0, 0, 0};
//const float magn_ellipsoid_transform[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
// Gyroscope
// "gyro x,y,z (current/average) = .../OFFSET_X .../OFFSET_Y .../OFFSET_Z
#define GYRO_AVERAGE_OFFSET_X ((float) 21.86)
#define GYRO_AVERAGE_OFFSET_Y ((float) -31.37)
#define GYRO_AVERAGE_OFFSET_Z ((float) -5.04)
/*
// Calibration example:
// "accel x,y,z (min/max) = -278.00/270.00 -254.00/284.00 -294.00/235.00"
#define ACCEL_X_MIN ((float) -278)
#define ACCEL_X_MAX ((float) 270)
#define ACCEL_Y_MIN ((float) -254)
#define ACCEL_Y_MAX ((float) 284)
#define ACCEL_Z_MIN ((float) -294)
#define ACCEL_Z_MAX ((float) 235)
// "magn x,y,z (min/max) = -511.00/581.00 -516.00/568.00 -489.00/486.00"
//#define MAGN_X_MIN ((float) -511)
//#define MAGN_X_MAX ((float) 581)
//#define MAGN_Y_MIN ((float) -516)
//#define MAGN_Y_MAX ((float) 568)
//#define MAGN_Z_MIN ((float) -489)
//#define MAGN_Z_MAX ((float) 486)
// Extended magn
#define CALIBRATION__MAGN_USE_EXTENDED true
const float magn_ellipsoid_center[3] = {91.5, -13.5, -48.1};
const float magn_ellipsoid_transform[3][3] = {{0.902, -0.00354, 0.000636}, {-0.00354, 0.9, -0.00599}, {0.000636, -0.00599, 1}};
// Extended magn (with Sennheiser HD 485 headphones)
//#define CALIBRATION__MAGN_USE_EXTENDED true
//const float magn_ellipsoid_center[3] = {72.3360, 23.0954, 53.6261};
//const float magn_ellipsoid_transform[3][3] = {{0.879685, 0.000540833, -0.0106054}, {0.000540833, 0.891086, -0.0130338}, {-0.0106054, -0.0130338, 0.997494}};
//"gyro x,y,z (current/average) = -32.00/-34.82 102.00/100.41 -16.00/-16.38"
#define GYRO_AVERAGE_OFFSET_X ((float) -34.82)
#define GYRO_AVERAGE_OFFSET_Y ((float) 100.41)
#define GYRO_AVERAGE_OFFSET_Z ((float) -16.38)
*/
// When set to true, gyro drift correction will not be applied
#define DEBUG__NO_DRIFT_CORRECTION false
// Print elapsed time after each I/O loop
#define DEBUG__PRINT_LOOP_TIME false
/****************** BMP085 *********************/
#define BMP085_ADDRESS 0x77 // I2C address of BMP085
const unsigned char OSS = 0; // Oversampling Setting
// Calibration values
int ac1;
int ac2;
int ac3;
unsigned int ac4;
unsigned int ac5;
unsigned int ac6;
int b1;
int b2;
int mb;
int mc;
int md;
long b5;
float temperature;
float pressure;
float atm; // "standard atmosphere"
float alti;
//Status
boolean is_launched = false;
boolean descent = false;
boolean parachute = false;
boolean touchdown = false;
//Timing
unsigned long launch;
unsigned long descentStart;
unsigned long parachuteDepl;
unsigned long touchTime;
/*****************************************************************/
#include <Wire.h>
#include <SD.h>
#include <Servo.h>...................................................................
Servo myservo;
int pos = 0;
int servoPin = 9;
// Sensor calibration scale and offset values
#define ACCEL_X_OFFSET ((ACCEL_X_MIN + ACCEL_X_MAX) / 2.0f)
#define ACCEL_Y_OFFSET ((ACCEL_Y_MIN + ACCEL_Y_MAX) / 2.0f)
#define ACCEL_Z_OFFSET ((ACCEL_Z_MIN + ACCEL_Z_MAX) / 2.0f)
#define ACCEL_X_SCALE (GRAVITY / (ACCEL_X_MAX - ACCEL_X_OFFSET))
#define ACCEL_Y_SCALE (GRAVITY / (ACCEL_Y_MAX - ACCEL_Y_OFFSET))
#define ACCEL_Z_SCALE (GRAVITY / (ACCEL_Z_MAX - ACCEL_Z_OFFSET))
#define MAGN_X_OFFSET ((MAGN_X_MIN + MAGN_X_MAX) / 2.0f)
#define MAGN_Y_OFFSET ((MAGN_Y_MIN + MAGN_Y_MAX) / 2.0f)
#define MAGN_Z_OFFSET ((MAGN_Z_MIN + MAGN_Z_MAX) / 2.0f)
#define MAGN_X_SCALE (100.0f / (MAGN_X_MAX - MAGN_X_OFFSET))
#define MAGN_Y_SCALE (100.0f / (MAGN_Y_MAX - MAGN_Y_OFFSET))
#define MAGN_Z_SCALE (100.0f / (MAGN_Z_MAX - MAGN_Z_OFFSET))
// Gain for gyroscope (ITG-3200)
#define GYRO_GAIN 0.06957 // Same gain on all axes
#define GYRO_SCALED_RAD(x) (x * TO_RAD(GYRO_GAIN)) // Calculate the scaled gyro readings in radians per second
// DCM parameters
#define Kp_ROLLPITCH 0.02f
#define Ki_ROLLPITCH 0.00002f
#define Kp_YAW 1.2f
#define Ki_YAW 0.00002f
// Stuff
#define STATUS_LED_PIN 13 // Pin number of status LED
#define GRAVITY 256.0f // "1G reference" used for DCM filter and accelerometer calibration
#define TO_RAD(x) (x * 0.01745329252) // *pi/180
#define TO_DEG(x) (x * 57.2957795131) // *180/pi
// Sensor variables
float accel[3]; // Actually stores the NEGATED acceleration (equals gravity, if board not moving).
float accel_min[3];
float accel_max[3];
float magnetom[3];
float magnetom_min[3];
float magnetom_max[3];
float magnetom_tmp[3];
float gyro[3];
float gyro_average[3];
int gyro_num_samples = 0;
int acc_res = 16;
// DCM variables
float MAG_Heading;
float Accel_Vector[3]= {0, 0, 0}; // Store the acceleration in a vector
float Gyro_Vector[3]= {0, 0, 0}; // Store the gyros turn rate in a vector
float Omega_Vector[3]= {0, 0, 0}; // Corrected Gyro_Vector data
float Omega_P[3]= {0, 0, 0}; // Omega Proportional correction
float Omega_I[3]= {0, 0, 0}; // Omega Integrator
float Omega[3]= {0, 0, 0};
float errorRollPitch[3] = {0, 0, 0};
float errorYaw[3] = {0, 0, 0};
float DCM_Matrix[3][3] = {{1, 0, 0}, {0, 1, 0}, {0, 0, 1}};
float Update_Matrix[3][3] = {{0, 1, 2}, {3, 4, 5}, {6, 7, 8}};
float Temporary_Matrix[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
// Euler angles
float yaw;
float pitch;
float roll;
// DCM timing in the main loop
unsigned long timestamp;
unsigned long timestamp_old;
float G_Dt; // Integration time for DCM algorithm
// More output-state variables
boolean output_stream_on;
boolean output_single_on;
int curr_calibration_sensor = 0;
boolean reset_calibration_session_flag = true;
int num_accel_errors = 0;
int num_magn_errors = 0;
int num_gyro_errors = 0;
void read_sensors() {
Read_Gyro(); // Read gyroscope
Read_Accel(); // Read accelerometer
Read_Magn(); // Read magnetometer
}
// Read every sensor and record a time stamp
// Init DCM with unfiltered orientation
// TODO re-init global vars?
void reset_sensor_fusion() {
float temp1[3];
float temp2[3];
float xAxis[] = {1.0f, 0.0f, 0.0f};
read_sensors();
timestamp = millis();
// GET PITCH
// Using y-z-plane-component/x-component of gravity vector
pitch = -atan2(accel[0], sqrt(accel[1] * accel[1] + accel[2] * accel[2]));
// GET ROLL
// Compensate pitch of gravity vector
Vector_Cross_Product(temp1, accel, xAxis);
Vector_Cross_Product(temp2, xAxis, temp1);
// Normally using x-z-plane-component/y-component of compensated gravity vector
// roll = atan2(temp2[1], sqrt(temp2[0] * temp2[0] + temp2[2] * temp2[2]));
// Since we compensated for pitch, x-z-plane-component equals z-component:
roll = atan2(temp2[1], temp2[2]);
// GET YAW
Compass_Heading();
yaw = MAG_Heading;
// Init rotation matrix
init_rotation_matrix(DCM_Matrix, yaw, pitch, roll);
}
// Apply calibration to raw sensor readings
void compensate_sensor_errors() {
// Compensate accelerometer error
accel[0] = (accel[0] - ACCEL_X_OFFSET) * ACCEL_X_SCALE;
accel[1] = (accel[1] - ACCEL_Y_OFFSET) * ACCEL_Y_SCALE;
accel[2] = (accel[2] - ACCEL_Z_OFFSET) * ACCEL_Z_SCALE;
// Compensate magnetometer error
#if CALIBRATION__MAGN_USE_EXTENDED == true
for (int i = 0; i < 3; i++)
magnetom_tmp[i] = magnetom[i] - magn_ellipsoid_center[i];
Matrix_Vector_Multiply(magn_ellipsoid_transform, magnetom_tmp, magnetom);
#else
magnetom[0] = (magnetom[0] - MAGN_X_OFFSET) * MAGN_X_SCALE;
magnetom[1] = (magnetom[1] - MAGN_Y_OFFSET) * MAGN_Y_SCALE;
magnetom[2] = (magnetom[2] - MAGN_Z_OFFSET) * MAGN_Z_SCALE;
#endif
// Compensate gyroscope error
gyro[0] -= GYRO_AVERAGE_OFFSET_X;
gyro[1] -= GYRO_AVERAGE_OFFSET_Y;
gyro[2] -= GYRO_AVERAGE_OFFSET_Z;
}
// Reset calibration session if reset_calibration_session_flag is set
void check_reset_calibration_session()
{
// Raw sensor values have to be read already, but no error compensation applied
// Reset this calibration session?
if (!reset_calibration_session_flag) return;
// Reset acc and mag calibration variables
for (int i = 0; i < 3; i++) {
accel_min[i] = accel_max[i] = accel[i];
magnetom_min[i] = magnetom_max[i] = magnetom[i];
}
// Reset gyro calibration variables
gyro_num_samples = 0; // Reset gyro calibration averaging
gyro_average[0] = gyro_average[1] = gyro_average[2] = 0.0f;
reset_calibration_session_flag = false;
}
void turn_output_stream_on()
{
output_stream_on = true;
digitalWrite(STATUS_LED_PIN, HIGH);
}
void turn_output_stream_off()
{
output_stream_on = false;
digitalWrite(STATUS_LED_PIN, LOW);
}
// Blocks until another byte is available on serial port
char readChar()
{
while (Serial.available() < 1) { } // Block
return Serial.read();
}
void initialiseServo()
{
Serial.println("Initialising servo");
myservo.write(0);
delay(1000);
if (myservo.read() == 0)
{
myservo.write(180);
}
delay(1000);
if (myservo.read() == 180)
{
myservo.write(0);
Serial.println("Servo initialized");
}
}
File dataFile;
String dataString = "";
String header;
int to_save = 0;
void setup()
{
Serial.begin(OUTPUT__BAUD_RATE);
pinMode (STATUS_LED_PIN, OUTPUT);
digitalWrite(STATUS_LED_PIN, LOW);
// Init sensors
delay(50); // Give sensors enough time to start
I2C_Init();
Accel_Init();
Magn_Init();
Gyro_Init();
Serial.println("9DOF initiated!");
// BMP085
bmp085Calibration();
Serial.println("Calibration done!");
// Read sensors, init DCM algorithm
delay(20); // Give sensors enough time to collect data
reset_sensor_fusion();
myservo.attach(servoPin);
initialiseServo();
pinMode(10, OUTPUT);
if (!SD.begin()) {
Serial.println("SD initialization failed!");
return;
}
Serial.println("SD initiated!.");
dataFile = SD.open("datalog.txt", FILE_WRITE);
//dataFile.println("milliseconds, accel[0], accel[1], accel[2], magnetom[0], magnetom[1], magnetom[2], gyro[0], gyro[1], gyro[2], temperature, pressure, altitude");
if (dataFile) {
dataFile.println("f,ax,ay,az,mx,my,mz,gx,gy,gz,t,p,h");
turn_output_stream_on();
//turn_output_stream_off();
}
else {
Serial.println("error opening datalog.txt");
delay(1000);
}
}
void loop()
{
Calculate_Events();
if (millis() % 20 == 0)
{
Serial.println((vector_module(accel)*0.021025)/9.8);
}
if((millis() - timestamp) >= OUTPUT__DATA_INTERVAL)
{
timestamp_old = timestamp;
timestamp = millis();
if (dataFile) {
dataFile.print(timestamp); dataFile.print(",");
}
if (timestamp > timestamp_old)
G_Dt = (float) (timestamp - timestamp_old) / 1000.0f; // Real time of loop run. We use this on the DCM algorithm (gyro integration time)
else G_Dt = 0;
// Update sensor readings
updateResolution();
read_sensors();
output_sensors();
output_single_on = false;
// BMP085
temperature = bmp085GetTemperature(bmp085ReadUT());
pressure = bmp085GetPressure(bmp085ReadUP());
alti = calcAltitude(pressure, getKelvin(temperature));
if (dataFile)
{
dataFile.print(temperature, 2); dataFile.print(",");
dataFile.print(pressure, 0); dataFile.print(",");
dataFile.print(alti, 2); dataFile.println();
}
to_save ++;
}
if (to_save == 50)
{
to_save = 0;
dataFile.close();
dataFile = SD.open("datalog.txt", FILE_WRITE);
}
}
void updateResolution()
{
if (false)
{
// if
// Wire.beginTransmission(ACCEL_ADDRESS);
// WIRE_SEND(0x31); // Data format register
// WIRE_SEND(0x08|res); // Set to full resolution
// Wire.endTransmission();
// delay(5);
}
}
// Stores all of the bmp085's calibration values into global variables
// Calibration values are required to calculate temp and pressure
// This function should be called at the beginning of the program
void bmp085Calibration()
{
ac1 = bmp085ReadInt(0xAA);
ac2 = bmp085ReadInt(0xAC);
ac3 = bmp085ReadInt(0xAE);
ac4 = bmp085ReadInt(0xB0);
ac5 = bmp085ReadInt(0xB2);
ac6 = bmp085ReadInt(0xB4);
b1 = bmp085ReadInt(0xB6);
b2 = bmp085ReadInt(0xB8);
mb = bmp085ReadInt(0xBA);
mc = bmp085ReadInt(0xBC);
md = bmp085ReadInt(0xBE);
}
// Calculate temperature in deg C
float bmp085GetTemperature(unsigned int ut){
long x1, x2;
x1 = (((long)ut - (long)ac6)*(long)ac5) >> 15;
x2 = ((long)mc << 11)/(x1 + md);
b5 = x1 + x2;
float temp = ((b5 + 8)>>4);
temp = temp /10;
return temp;
}
// Calculate pressure given up
// calibration values must be known
// b5 is also required so bmp085GetTemperature(...) must be called first.
// Value returned will be pressure in units of Pa.
long bmp085GetPressure(unsigned long up){
long x1, x2, x3, b3, b6, p;
unsigned long b4, b7;
b6 = b5 - 4000;
// Calculate B3
x1 = (b2 * (b6 * b6)>>12)>>11;
x2 = (ac2 * b6)>>11;
x3 = x1 + x2;
b3 = (((((long)ac1)*4 + x3)<<OSS) + 2)>>2;
// Calculate B4
x1 = (ac3 * b6)>>13;
x2 = (b1 * ((b6 * b6)>>12))>>16;
x3 = ((x1 + x2) + 2)>>2;
b4 = (ac4 * (unsigned long)(x3 + 32768))>>15;
b7 = ((unsigned long)(up - b3) * (50000>>OSS));
if (b7 < 0x80000000)
p = (b7<<1)/b4;
else
p = (b7/b4)<<1;
x1 = (p>>8) * (p>>8);
x1 = (x1 * 3038)>>16;
x2 = (-7357 * p)>>16;
p += (x1 + x2 + 3791)>>4;
return p;
}
// Read 1 byte from the BMP085 at 'address'
char bmp085Read(unsigned char address)
{
unsigned char data;
Wire.beginTransmission(BMP085_ADDRESS);
Wire.write(address);
Wire.endTransmission();
Wire.requestFrom(BMP085_ADDRESS, 1);
while(!Wire.available())
;
return Wire.read();
}
// Read 2 bytes from the BMP085
// First byte will be from 'address'
// Second byte will be from 'address'+1
int bmp085ReadInt(unsigned char address)
{
unsigned char msb, lsb;
Wire.beginTransmission(BMP085_ADDRESS);
Wire.write(address);
Wire.endTransmission();
Wire.requestFrom(BMP085_ADDRESS, 2);
while(Wire.available()<2)
;
msb = Wire.read();
lsb = Wire.read();
return (int) msb<<8 | lsb;
}
// Read the uncompensated temperature value
unsigned int bmp085ReadUT()
{
unsigned int ut;
// Write 0x2E into Register 0xF4
// This requests a temperature reading
Wire.beginTransmission(BMP085_ADDRESS);
Wire.write(0xF4);
Wire.write(0x2E);
Wire.endTransmission();
// Wait at least 4.5ms
delay(5);
// Read two bytes from registers 0xF6 and 0xF7
ut = bmp085ReadInt(0xF6);
return ut;
}
// Read the uncompensated pressure value
unsigned long bmp085ReadUP()
{
unsigned char msb, lsb, xlsb;
unsigned long up = 0;
// Write 0x34+(OSS<<6) into register 0xF4
// Request a pressure reading w/ oversampling setting
Wire.beginTransmission(BMP085_ADDRESS);
Wire.write(0xF4);
Wire.write(0x34 + (OSS<<6));
Wire.endTransmission();
// Wait for conversion, delay time dependent on OSS
delay(2 + (3<<OSS));
// Read register 0xF6 (MSB), 0xF7 (LSB), and 0xF8 (XLSB)
msb = bmp085Read(0xF6);
lsb = bmp085Read(0xF7);
xlsb = bmp085Read(0xF8);
up = (((unsigned long) msb << 16) | ((unsigned long) lsb << 8) | (unsigned long) xlsb) >> (8-OSS);
return up;
}
void writeRegister(int deviceAddress, byte address, byte val)
{
Wire.beginTransmission(deviceAddress); // start transmission to device
Wire.write(address); // send register address
Wire.write(val); // send value to write
Wire.endTransmission(); // end transmission
}
int readRegister(int deviceAddress, byte address)
{
int v;
Wire.beginTransmission(deviceAddress);
Wire.write(address); // register to read
Wire.endTransmission();
Wire.requestFrom(deviceAddress, 1); // read a byte
while(!Wire.available()) {
// waiting
}
v = Wire.read();
return v;
}
float calcAltitude(float pressure, float temperature)
{
static float p0 = 0;
static float pressArray[] = {0, 0, 0, 0, 0};
static float p0min = 0, p0max = 0;
if (p0 == 0)
{
for (int i = 0; i < 5; i++)
{
if (pressArray[i] == 0)
{
pressArray[i] = pressure;
if (p0min == 0 || p0min > pressure)
{
p0min = pressure;
}
if (p0max < pressure)
{
p0max = pressure;
}
if (i == 4)
{
for (int h = 0; h < 5; h++)
{
if (p0min == pressArray[h])
{
p0min == 0;
}
else if (p0max == pressArray[h])
{
p0max == 0;
}
else
{
p0 += pressArray[h];
}
}
p0 /= 3;
}
break;
}
}
}
if (p0 != 0)
{
return (-29.4289 * temperature * log(pressure/p0));
}
else
{
return 0;
}
}
float getKelvin(float celsius)
{
return celsius + 273.15;
}
float[] getAcc(float accel[])
{
//TODO
}