-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathKNNSing.py
79 lines (73 loc) · 2.79 KB
/
KNNSing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import os
import os.path
import glob
from keras.models import model_from_json
from keras.layers import Dense
from keras.optimizers import SGD
import cv2
import numpy as np
import pickle as pkl
import sys
from sklearn.preprocessing import MinMaxScaler
from sklearn.neighbors import KNeighborsClassifier
def get_data_parts(dataline):
parts = dataline.split(" ")
Y = np.array([int(parts[0]),int(parts[1]),int(parts[2]),int(parts[3]),int(parts[4]),int(parts[5]),int(parts[6]),int(parts[7]),int(parts[8])])
Y = Y.reshape(9,1)
y_train = np.zeros([1])
#print(y_train)
if int(parts[9]) == 1:
y_train[0] = float(0.1 * 10)
else :
y_train[0] = float(0)
#y_train[0][int(parts[10])] = 0.95/4.5
#y_train[0][int(parts[11])] = 0.9/4.5
#y_train[0][int(parts[12])] = 0.8/4.5
#y_train[0][int(parts[13])] = 0.85/4.5
#print(y_train[0][int(parts[9])])
return Y , y_train
if __name__ == '__main__':
num_classes = 21
f1 = open('datasettest.txt','r')
n = f1.readline().strip()
k = 0
while k != 20000:
Y , y_train = get_data_parts(n)
for i in range(19999) :
n = f1.readline().strip()
z , z_train = get_data_parts(n)
#print(np.shape(Y))
Y = np.append(Y,z,axis = 1)
y_train = np.append(y_train,z_train,axis = 0)
k+=1
n = f1.readline().strip()
k+=1
Y = Y.T
scalar = MinMaxScaler()
Y = scalar.fit_transform(Y)
knn = KNeighborsClassifier()
knn.fit(Y,y_train)
print(knn.score(Y,y_train))
#print(Y.shape)
#print(y_train.shape)
f2 = open('datasetclass.txt','r')
n = f2.readline().strip()
k = 0
while k != 200000:
Y_test , y_test = get_data_parts(n)
for i in range(199999) :
n = f2.readline().strip()
z , z_train = get_data_parts(n)
#print(np.shape(Y))
Y_test = np.append(Y_test,z,axis = 1)
y_test = np.append(y_test,z_train,axis = 0)
k+=1
n = f2.readline().strip()
k+=1
Y_test = Y_test.T
Y_test = scalar.fit_transform(Y_test)
print(knn.score(Y_test,y_test))
f1 = open('Results.txt','a')
f1.write('Accuracy for K Nearest Neighbor Single Class Classification' + '\n')
f1.write('The training accuracy is : '+ str(knn.score(Y,y_train))+'\n')
f1.write('The training accuracy is : '+ str(knn.score(Y_test,y_test))+'\n\n')