-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsolutions1.py
269 lines (228 loc) · 7.92 KB
/
solutions1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
import ipdb
import json
import string
import solutions
def is_pythagorean_triplet(a, b, c):
return a**2 + b ** 2 == c ** 2 and a < b and b < c
def special_pythagorean_triplet(n):
"""
>>> special_pythagorean_triplet(12)
3 4 5
>>> special_pythagorean_triplet(1000)
200 375 425
A Pythagorean triplet is a set of three natural numbers,
a < b < c, for which, a2 + b2 = c2
For example, 32 + 42 = 9 + 16 = 25 = 52.
There exists exactly one Pythagorean triplet for which a + b + c = 1000.
"""
for a in range(0, n/2):
for b in range(a+1, n/2):
for c in range(b+1, n/2):
if a + b + c == n and is_pythagorean_triplet(a, b, c):
print a, b, c
def sum_of_primes(limit):
"""
>>> sum_of_primes(2000000)
142913828922
"""
sum = 0
for prime in solutions.generate_prime():
if prime < limit:
sum += prime
else:
break
return sum
def add_pointers(grid):
new_grid = {}
i = 0
for line in grid:
j = 0
for ele in line:
new_grid[(i,j)] = ele
j += 1
i += 1
return new_grid
def largest_product_in_grid(num):
grid = [[8, 2, 22, 97, 38, 15, 0, 40, 0, 75, 4, 5, 7, 78, 52, 12, 50, 77, 91, 8], [49, 49, 99, 40, 17, 81, 18, 57, 60, 87, 17, 40, 98, 43, 69, 48, 4, 56, 62, 0], [81, 49, 31, 73, 55, 79, 14, 29, 93, 71, 40, 67, 53, 88, 30, 3, 49, 13, 36, 65], [52, 70, 95, 23, 4, 60, 11, 42, 69, 24, 68, 56, 1, 32, 56, 71, 37, 2, 36, 91], [22, 31, 16, 71, 51, 67, 63, 89, 41, 92, 36, 54, 22, 40, 40, 28, 66, 33, 13, 80], [24, 47, 32, 60, 99, 3, 45, 2, 44, 75, 33, 53, 78, 36, 84, 20, 35, 17, 12, 50], [32, 98, 81, 28, 64, 23, 67, 10, 26, 38, 40, 67, 59, 54, 70, 66, 18, 38, 64, 70], [67, 26, 20, 68, 2, 62, 12, 20, 95, 63, 94, 39, 63, 8, 40, 91, 66, 49, 94, 21], [24, 55, 58, 5, 66, 73, 99, 26, 97, 17, 78, 78, 96, 83, 14, 88, 34, 89, 63, 72], [21, 36, 23, 9, 75, 0, 76, 44, 20, 45, 35, 14, 0, 61, 33, 97, 34, 31, 33, 95], [78, 17, 53, 28, 22, 75, 31, 67, 15, 94, 3, 80, 4, 62, 16, 14, 9, 53, 56, 92], [16, 39, 5, 42, 96, 35, 31, 47, 55, 58, 88, 24, 0, 17, 54, 24, 36, 29, 85, 57], [86, 56, 0, 48, 35, 71, 89, 7, 5, 44, 44, 37, 44, 60, 21, 58, 51, 54, 17, 58], [19, 80, 81, 68, 5, 94, 47, 69, 28, 73, 92, 13, 86, 52, 17, 77, 4, 89, 55, 40], [4, 52, 8, 83, 97, 35, 99, 16, 7, 97, 57, 32, 16, 26, 26, 79, 33, 27, 98, 66], [88, 36, 68, 87, 57, 62, 20, 72, 3, 46, 33, 67, 46, 55, 12, 32, 63, 93, 53, 69], [4, 42, 16, 73, 38, 25, 39, 11, 24, 94, 72, 18, 8, 46, 29, 32, 40, 62, 76, 36], [20, 69, 36, 41, 72, 30, 23, 88, 34, 62, 99, 69, 82, 67, 59, 85, 74, 4, 36, 16], [20, 73, 35, 29, 78, 31, 90, 1, 74, 31, 49, 71, 48, 86, 81, 16, 23, 57, 5, 54], [1, 70, 54, 71, 83, 51, 54, 69, 16, 92, 33, 48, 61, 43, 52, 1, 89, 19, 67, 48]]
original = grid
grid = add_pointers (grid)
maximum = 0
limit = (len(original)-num) + 1
for i in range(limit):
for j in range(limit):
k = 0
total = 1
items = []
while k < num:
total *= grid[(i+k, j+k)]
items.append(grid[(i+k, j+k)])
if maximum < total:
maximum = total
k += 1
print items
import ipdb
ipdb.set_trace()
def triangle_number_generator():
i = 1
total = 0
while True:
total +=i
yield total
i += 1
def max_triangle_divisors(limit):
"""
>>> max_triangle_divisors(500)
76576500
"""
triangle_number = triangle_number_generator()
while True:
value = triangle_number.next()
factors = solutions.factors(value)
if len(factors)-1 >= limit:
return value
def get_collatz_seq(num, items=None):
"""
>>> get_collatz_seq(13)
[13, 40, 20, 10, 5, 16, 8, 4, 2, 1]
"""
items = items or []
items.append(num)
if num == 1:
return items
elif num % 2 == 0:
return get_collatz_seq(num/2, items)
else:
return get_collatz_seq((3*num)+1, items)
def longest_collatz_seq(limit):
"""
>>> longest_collatz_seq(1000000)
837799
"""
longest = 0
start = limit/2
last = 0
while start < limit:
length = len(get_collatz_seq(start))
if longest < length:
longest = length
last = start
start += 1
return last
def power_digit_sum(num, power):
"""
>>> power_digit_sum(2, 15)
26
"""
result = num ** power
total = 0
while True:
total += result % 10
if result/10 == 0:
return total
result /= 10
def names_scores():
i = 1
alpha_char = {}
for c in string.ascii_uppercase:
alpha_char[c] = i
i += 1
data = open('names.txt').read()
names = sorted([i.strip().replace('"','') for i in data.split(',')])
name_indexs = dict(enumerate(names, 1))
names_score_map = {}
for index, name in name_indexs.iteritems():
total = 0
for c in name:
total += alpha_char[c]
names_score_map[name] = total * index
return names_score_map
dt = {
'One' : 3, 'Two' : 3, 'Three' : 5, 'Four' : 4, 'Five' : 4, 'Six' : 3, 'Seven' : 5, 'Eight' : 5, 'Nine' : 4, 'Ten' : 3,
'Eleven' : 6, 'Twelve' : 6, 'Thirteen' : 8, 'Fourteen' : 8, 'Fifteen' : 7, 'Sixteen' : 7, 'Seventeen' : 9, 'Eighteen' : 8,
'Nineteen' : 8, 'Twenty' : 6, 'Thirty' : 6, 'Forty' : 5, 'Fifty' : 5, 'Sixty' : 5, 'Seventy' : 7, 'Eighty' : 6,
'Ninety' : 6, 'Hundred' : 7, 'Thousand' : 8
}
num_to_word = {
1:'One' , 2:'Two' , 3:'Three' , 4:'Four' , 5:'Five' , 6:'Six' , 7:'Seven' , 8:'Eight' , 9:'Nine' , 10:'Ten',
11:'Eleven', 12:'Twelve', 13:'Thirteen', 14:'Fourteen', 15:'Fifteen', 16:'Sixteen', 17:'Seventeen', 18:'Eighteen',
19:'Nineteen', 20:'Twenty', 30:'Thirty', 40:'Forty', 50:'Fifty', 60:'Sixty', 70:'Seventy', 80:'Eighty',
90:'Ninety', 100:'Hundred', 1000: 'Thousand'
}
def print_it(num_seq):
result = []
for num in num_seq:
if isinstance(num, type(())):
result.append(num_to_word[num[0]])
result.append(num_to_word[num[1]])
elif str(num).find('00') >= 1:
result.append('One '+num_to_word[num])
else:
result.append(num_to_word[num])
return result
def num_to_words(num, items = None):
items = items or []
if num in num_to_word:
items.append(num)
return items
digit = solutions.get_digits(num)
nth = 10**(digit-1)
div = num / nth
rem = num % nth
if div*nth in num_to_word:
items.append(div*nth)
else:
items.append((div, nth))
if rem in num_to_word:
items.append(rem)
elif rem >= 1:
num_to_words(rem, items)
return items
def covert_into_words(num):
items = num_to_words(num)
return print_it(items)
def count_it(seq):
total = 0
for item in seq:
if isinstance(item,type(())):
total += dt[num_to_word[item[0]]]
total += dt[num_to_word[item[1]]]
elif str(item).find('00') >= 1:
total += 3
total += dt[num_to_word[item]]
else:
total += dt[num_to_word[item]]
if len(seq) > 2:
total += 3
elif len(seq) == 2:
if isinstance(seq[0], type(())) or isinstance(seq[1], type(())):
total += 3
elif seq[0] >= 100:
total += 3
return total
def number_letter_counts(num):
"""
>>> number_letter_counts(1000)
21124
"""
total = 0
for num in range(1, num+1):
total += count_it(num_to_words(num))
return total
def factorial(num):
"""
>>> factorial(10)
3628800
"""
if num <= 1:
return 1
else:
return num * factorial(num-1)
def factorial_digit_sum(n):
"""
>>> factorial_digit_sum(10)
27
"""
return sum([int(i) for i in str(factorial(n))])
if __name__ == "__main__":
import doctest
doctest.testmod()