diff --git a/articles/batch-processing.html b/articles/batch-processing.html index 9d210de..cf51763 100644 --- a/articles/batch-processing.html +++ b/articles/batch-processing.html @@ -592,7 +592,7 @@
> pbmclapply: 2.44 sec elapsed
We can see that the multi-core approach is
more than three times faster (in this single test run) than the
single-core approach! Let’s see how furrr::future_map()
compares to this.
# Example image with high complexity: trees
-trees <- img_read(system.file("example_images", "trees.jpg", package = "imagefluency"))
-#
-# display image
-grid::grid.raster(trees)
-#
-# get complexity
-img_complexity(trees)
-
-
-# Example image with low complexity: sky
-sky <- img_read(system.file("example_images", "sky.jpg", package = "imagefluency"))
-#
-# display image
-grid::grid.raster(sky)
-#
-# get complexity
-img_complexity(sky)
-
# Example image with high complexity: trees
+trees <- img_read(system.file("example_images", "trees.jpg", package = "imagefluency"))
+#
+# display image
+grid::grid.raster(trees)
+#
+# get complexity
+img_complexity(trees)
+#> [1] 0.8949686
+
+
+# Example image with low complexity: sky
+sky <- img_read(system.file("example_images", "sky.jpg", package = "imagefluency"))
+#
+# display image
+grid::grid.raster(sky)
+
+#
+# get complexity
+img_complexity(sky)
+#> [1] 0.4199254
+
+