diff --git a/articles/batch-processing.html b/articles/batch-processing.html index 9d210de..cf51763 100644 --- a/articles/batch-processing.html +++ b/articles/batch-processing.html @@ -592,7 +592,7 @@

Parallel processing with multip
> pbmclapply: 2.44 sec elapsed

We can see that the multi-core approach is more than three times faster (in this single test run) than the single-core approach! Let’s see how furrr::future_map() compares to this.

diff --git a/pkgdown.yml b/pkgdown.yml index f7dec21..2422554 100644 --- a/pkgdown.yml +++ b/pkgdown.yml @@ -4,7 +4,7 @@ pkgdown_sha: ~ articles: batch-processing: batch-processing.html getting-started: getting-started.html -last_built: 2023-10-23T14:53Z +last_built: 2023-10-23T15:20Z urls: reference: https://stm.github.io/imagefluency/reference article: https://stm.github.io/imagefluency/articles diff --git a/reference/Rplot001.png b/reference/Rplot001.png new file mode 100644 index 0000000..17a3580 Binary files /dev/null and b/reference/Rplot001.png differ diff --git a/reference/img_complexity-1.png b/reference/img_complexity-1.png new file mode 100644 index 0000000..296647b Binary files /dev/null and b/reference/img_complexity-1.png differ diff --git a/reference/img_complexity.html b/reference/img_complexity.html index ef3111d..73e3966 100644 --- a/reference/img_complexity.html +++ b/reference/img_complexity.html @@ -149,25 +149,29 @@

See also

Examples

-
# Example image with high complexity: trees
-trees <- img_read(system.file("example_images", "trees.jpg", package = "imagefluency"))
-#
-# display image
-grid::grid.raster(trees)
-#
-# get complexity
-img_complexity(trees)
-
-
-# Example image with low complexity: sky
-sky <- img_read(system.file("example_images", "sky.jpg", package = "imagefluency"))
-#
-# display image
-grid::grid.raster(sky)
-#
-# get complexity
-img_complexity(sky)
-
+
# Example image with high complexity: trees
+trees <- img_read(system.file("example_images", "trees.jpg", package = "imagefluency"))
+#
+# display image
+grid::grid.raster(trees)
+#
+# get complexity
+img_complexity(trees)
+#> [1] 0.8949686
+
+
+# Example image with low complexity: sky
+sky <- img_read(system.file("example_images", "sky.jpg", package = "imagefluency"))
+#
+# display image
+grid::grid.raster(sky)
+
+#
+# get complexity
+img_complexity(sky)
+#> [1] 0.4199254
+
+