-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathmodel.py
142 lines (113 loc) · 6.07 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
from models.base_model import NeRF
from models.embedders import get_embedder
import torch
import os
SEED = False
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def batchify(fn, chunk):
"""Constructs a version of 'fn' that applies to smaller batches.
"""
if chunk is None:
return fn
def ret(inputs, styles, alpha, feature):
results = []
for i in range(0, inputs.shape[0], chunk):
input_chunk = inputs[i:i + chunk]
style_chunk = styles[i:i + chunk]
alpha_chunk = alpha[i:i + chunk] if alpha is not None else None
feature_chunk = feature[i:i + chunk] if feature is not None else None
results.append(fn(input_chunk, style_chunk, alpha_chunk, feature_chunk))
return torch.cat(results, 0)
return ret
def run_network(inputs, styles, viewdirs, fn, alpha, feature, embed_fn, embeddirs_fn, netchunk=1024 * 64):
"""Prepares inputs and applies network 'fn'.
"""
inputs_flat = torch.reshape(inputs, [-1, inputs.shape[-1]])
embedded = embed_fn(inputs_flat)
if viewdirs is not None:
input_dirs = viewdirs[:, None].expand(inputs.shape)
input_dirs_flat = torch.reshape(input_dirs, [-1, input_dirs.shape[-1]])
embedded_dirs = embeddirs_fn(input_dirs_flat)
embedded = torch.cat([embedded, embedded_dirs], -1)
if alpha is not None:
alpha = torch.reshape(alpha, [-1, 1])
if feature is not None:
feature = torch.reshape(feature, [-1, feature.shape[-1]])
outputs_flat = batchify(fn, netchunk)(embedded, styles, alpha, feature)
outputs = torch.reshape(outputs_flat, list(inputs.shape[:-1]) + [outputs_flat.shape[-1]])
return outputs
def load_checkpoint(chkpt_dir, args):
ckpts = [os.path.join(chkpt_dir, f) for f in sorted(os.listdir(chkpt_dir)) if 'tar' in f]
if not args.no_reload and (args.load_it != 0 or len(ckpts) > 0):
if args.load_it != 0:
ckpt_path = os.path.join(chkpt_dir, '{:06d}.tar'.format(args.load_it))
else:
ckpt_path = ckpts[-1]
ckpt = torch.load(ckpt_path)
return ckpt
else:
return None
def create_nerf(args, return_styles=False):
"""Instantiate NeRF's MLP model.
"""
if SEED:
torch.manual_seed(1234)
embed_fn, input_ch = get_embedder(args.multires, args.i_embed)
input_ch_views = 0
style_dim = args.style_dim
embeddirs_fn = None
if args.use_viewdirs:
embeddirs_fn, input_ch_views = get_embedder(args.multires_views, args.i_embed)
output_ch = 5 if args.N_importance > 0 else 4
model = NeRF(D_mean=args.D_mean, W_mean=args.W_mean, D_instance=args.D_instance, W_instance=args.W_instance, D_fusion=args.D_fusion, W_fusion=args.W_fusion, D_sigma=args.D_sigma,
D_rgb=args.D_rgb, W_rgb=args.W_rgb, W_bottleneck=args.W_bottleneck, input_ch=input_ch, output_ch=output_ch, input_ch_views=input_ch_views, style_dim=style_dim,
embed_dim=args.embed_dim, style_depth=args.style_depth, shared_shape=args.shared_shape, use_viewdirs=args.use_viewdirs, separate_codes=args.separate_codes, use_styles=args.use_styles).to(device)
grad_vars = list(model.parameters())
model_fine = None
if args.N_importance > 0:
model_fine = NeRF(D_mean=args.D_mean, W_mean=args.W_mean, D_instance=args.D_instance, W_instance=args.W_instance, D_fusion=args.D_fusion, W_fusion=args.W_fusion, D_sigma=args.D_sigma,
D_rgb=args.D_rgb, W_rgb=args.W_rgb, W_bottleneck=args.W_bottleneck, input_ch=input_ch, output_ch=output_ch, input_ch_views=input_ch_views, style_dim=style_dim, embed_dim=args.embed_dim, style_depth=args.style_depth, shared_shape=args.shared_shape, use_viewdirs=args.use_viewdirs, separate_codes=args.separate_codes, use_styles=args.use_styles).to(device)
grad_vars += list(model_fine.parameters())
def network_query_fn(inputs, styles, viewdirs, network_fn, alpha, feature): return run_network(inputs, styles, viewdirs, network_fn, alpha, feature,
embed_fn=embed_fn,
embeddirs_fn=embeddirs_fn,
netchunk=args.netchunk)
# Create optimizer
optimizer = torch.optim.Adam(params=grad_vars, lr=args.lrate, betas=(0.9, 0.999))
start = 0
basedir = args.basedir
expname = args.expname
##########################
ckpt = load_checkpoint(os.path.join(basedir, expname), args) # Load checkpoints
if args.load_from is not None:
print('Loading from', args.load_from)
ckpt = torch.load(args.load_from)
if ckpt is not None and not args.skip_loading:
start = ckpt['global_step']
model.load_state_dict(ckpt['network_fn_state_dict'])
if model_fine is not None:
model_fine.load_state_dict(ckpt['network_fine_state_dict'])
optimizer.load_state_dict(ckpt['optimizer_state_dict'])
##########################
render_kwargs_train = {
'network_query_fn': network_query_fn,
'perturb': args.perturb,
'perturb_coarse': args.perturb_coarse,
'N_importance': args.N_importance,
'network_fine': model_fine,
'N_samples': args.N_samples,
'network_fn': model,
'use_viewdirs': args.use_viewdirs,
'white_bkgd': args.white_bkgd,
'raw_noise_std': args.raw_noise_std,
}
# NDC only good for LLFF-style forward facing data
render_kwargs_train['ndc'] = False
render_kwargs_train['lindisp'] = False
render_kwargs_test = {k: render_kwargs_train[k] for k in render_kwargs_train}
render_kwargs_test['perturb'] = False
render_kwargs_test['perturb_coarse'] = False
render_kwargs_test['raw_noise_std'] = 0.
if return_styles:
return render_kwargs_train, render_kwargs_test, start, grad_vars, optimizer, ckpt['styles']
return render_kwargs_train, render_kwargs_test, start, grad_vars, optimizer