forked from sandhya212/BISCUIT_SingleCell_IMM_ICML_2016
-
Notifications
You must be signed in to change notification settings - Fork 1
/
start_file.R
executable file
·69 lines (46 loc) · 1.88 KB
/
start_file.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
## 21st Dec 2016
## BISCUIT R implementation
## Start_file with user inputs
##
## Code author SP
###
rm(list=ls()); graphics.off()
working_path <- "/opt/BISCUIT_SingleCell_IMM_ICML_2016"; setwd(working_path);
###
###
###
############## packages required ##############
library(MCMCpack)
library(mvtnorm)
library(ellipse)
library(coda)
library(Matrix)
library(Rtsne)
library(gtools)
library(foreach)
library(doParallel)
library(doSNOW)
library(snow)
library(lattice)
library(MASS)
library(bayesm)
library(robustbase)
library(chron)
library(mnormt)
library(schoolmath)
library(RColorBrewer)
#############################################
input_file_name <- "expression_mRNA_17-Aug-2014.txt";
input_data_tab_delimited <- TRUE; #set to TRUE if the input data is tab-delimited
is_format_genes_cells <- TRUE; #set to TRUE if input data has rows as genes and columns as cells
choose_cells <- 3000; #comment if you want all the cells to be considered
choose_genes <- 150; #comment if you want all the genes to be considered
gene_batch <- 50; #number of genes per batch, therefore num_batches = choose_genes (or numgenes)/gene_batch. Max value is 150
num_iter <- 20; #number of iterations, choose based on data size.
num_cores <- detectCores() - 4; #number of cores for parallel processing. Ensure that detectCores() > 1 for parallel processing to work, else set num_cores to 1.
z_true_labels_avl <- TRUE; #set this to TRUE if the true labels of cells are available, else set it to FALSE. If TRUE, ensure to populate 'z_true' with the true labels in 'BISCUIT_process_data.R'
num_cells_batch <- 1000; #set this to 1000 if input number of cells is in the 1000s, else set it to 100.
alpha <- 1; #DPMM dispersion parameter. A higher value spins more clusters whereas a lower value spins lesser clusters.
output_folder_name <- "output"; #give a name for your output folder.
## call BISCUIT
source("BISCUIT_main.R")