-
Notifications
You must be signed in to change notification settings - Fork 1
/
profana.py
1897 lines (1614 loc) · 85 KB
/
profana.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
"""
Script created Wednesday October 9th 2019
@uthor: BP Baranowsky
"""
"""
Changes :
--> Inserted tool for finding genomes that are not downloaded in my database
"""
#################################################################################
""" Importing libraries that will be used. """
from collections import Counter
from scipy.stats import wilcoxon as test
import pandas as pd
from statsmodels.stats.multitest import multipletests as correction #
import datetime
import json
#################################################################################
class NeighborhoodAnalyzerFromGene:
def __init__(self, user_list_of_genes, user_distance_value, user_database, user_cutoff, user_correction,
user_strand_value,
user_output):
self.user_list_of_genes = user_list_of_genes
self.user_distance_value = user_distance_value
self.user_database = user_database
self.user_cutoff = user_cutoff
self.user_correction = user_correction
self.user_strand_value = user_strand_value
self.user_output = user_output
def open_single_column_file(self, file_name):
""" Opens file that contains one column of data """
plik = []
with open(file_name) as inputfile:
for line in inputfile:
plik.append(line.strip())
return plik
def open_multiple_column_file(self, file_name, split_mark=" "):
""" Opens file that contain more than one column and split it by space. """
plik = []
with open(file_name) as inputfile:
for line in inputfile:
plik.append(line.strip().split(split_mark))
return plik
def open_singleline_num(self, path_to_file):
""" Opens file that contain 1 column and strip it by space. """
with open(path_to_file, 'r') as f:
file_names = [float(line.strip()) for line in f]
return file_names
def open_json_file(self, file_name):
with open(file_name, 'r') as fp:
data = json.load(fp)
all_data = []
for key, values in data.items():
all_data.append([key, values[0], values[1]])
return all_data
def open_query(self, path_to_file):
with open(path_to_file, 'r') as f:
file_names = [line.strip() for line in f]
return file_names
def save_complete(self, file, message_for_additional_data, complete_data):
""" Saves all stuff together as one file """
################################################################################################################
# KLASTER
# with open('results/' + file, 'w') as output_file:
################################################################################################################
# LOCAL
# with open('/mnt/d/45.76.38.24/final_site-project/results/' + file + '.txt', 'w') as output_file:
################################################################################################################
# VULTR
with open('/home/djangoadmin/final_site-project' + file, 'w') as output_file:
################################################################################################################
output_file.write(message_for_additional_data)
output_file.write("\n")
# output_file.write(complete_data)
for row in complete_data.iterrows():
index, data = row
pre = data.tolist()
output_file.write(index)
output_file.write("\t")
output_file.write("\t".join([str(i) for i in pre]))
output_file.write("\n")
def collect_pfam_domain_description(self, file):
""" Opens file only to gather information"""
data = {}
with open(file) as inputfile:
for line in inputfile:
try:
one_line = line.strip().split("@")
domena = one_line[0]
pre_family = one_line[1][8:]
delete_this = "(" + domena.upper() + ")"
family = pre_family.replace(delete_this, "")
summary = one_line[2][9:]
data[domena] = (family, summary)
except IndexError:
continue
return data
def create_6_lists(self, file):
# data = self.open_multiple_column_file(file)
start_coord = []
end_coord = []
orientation = []
domains = []
genes = []
contig = []
# NOWA BAZA DANYCH, KLASTER
# with open("nowa_baza_danych/"+file) as inputfile:
# VULTR
with open("/home/djangoadmin/final_site-project/important_files/nowa_baza_danych/" + file) as inputfile:
for line in inputfile:
bit = line.strip().split()
genes.append(int(bit[0]))
start_coord.append(int(bit[1]))
end_coord.append(int(bit[2]))
orientation.append(bit[3])
domains.append(bit[4])
contig.append(bit[5])
return genes, start_coord, end_coord, orientation, domains, contig
def find_correct_genome(self, gene, reference_data):
for line in reference_data:
genome = line[0]
starts = [x for x in line[1::2]]
ends = [x for x in line[2::2]]
counter = 0
for start in starts:
end = ends[counter]
counter += 1
if int(gene) in range(int(start), int(end) + 1):
return genome
def get_genome_size_in_gene(self, genome_id, list_of_genome, list_of_size):
""" Takes genome's id, list of genome and lists with data about how much genes in genome"""
indeks_genomu = list_of_genome.index(genome_id)
genome_size_in_gene = list_of_size[indeks_genomu]
return genome_size_in_gene
def search_for_gene_in_genome(self, q_gene, genes, start_coords, end_coords, orients, contig):
result = []
main_index = genes.index(int(q_gene))
result.append(start_coords[main_index])
result.append(end_coords[main_index])
result.append(orients[main_index])
result.append(contig[main_index])
result.append(q_gene)
return result
def get_range_coordinates(self, target_gene, distance):
"""
Based on how large neighbourhood user wants to analyze creates
points FROM and TO, additionaly shows where main user's pfam begins and ENDS
with orientation on strands
"""
gene_id = target_gene[4]
gene_beg = target_gene[0]
gene_end = target_gene[1]
searched_gene_orient = target_gene[2]
last_coordinate = gene_end + int(distance)
first_coordinate = gene_beg - int(distance)
return last_coordinate, first_coordinate, gene_beg, gene_end, searched_gene_orient
def get_domain_both_strands(self, start_coord, end_coord, last_coordinate, first_coordinate, gene_beg,
gene_end, contig, result):
pfam_index_to_neigh = []
s_coord_counter = 0
for s_coord in start_coord:
if s_coord <= last_coordinate and s_coord >= gene_beg and contig[s_coord_counter] == result[
3] and s_coord_counter not in pfam_index_to_neigh:
pfam_index_to_neigh.append(s_coord_counter)
s_coord_counter += 1
else:
s_coord_counter += 1
continue
e_coord_counter = 0
for e_coord in end_coord:
if e_coord >= first_coordinate and e_coord <= gene_end and contig[e_coord_counter] == result[
3] and e_coord_counter not in pfam_index_to_neigh:
pfam_index_to_neigh.append(e_coord_counter)
e_coord_counter += 1
else:
e_coord_counter += 1
continue
return pfam_index_to_neigh
def get_domain_both_zeros(self, ref_gene, q_gene):
index_list_gene = []
counter = 0
for gene in ref_gene:
if gene == int(q_gene):
index_list_gene.append(counter)
counter += 1
return index_list_gene
def get_list_of_genes_in_neigh(self, list_of_genes, index_list):
""" Takes overall gene's list in genome and creates complete list of genes in neighbourhood """
list_of_genes_in_neigh = []
for pfam_domain in index_list:
list_of_genes_in_neigh.append(list_of_genes[pfam_domain])
return list_of_genes_in_neigh
def get_size_in_genes(self, genome_or_gene_list):
""" Takes list of genes and returns size of neighbourhood """
list_of_genes = []
for gene in genome_or_gene_list:
list_of_genes.append(gene)
return len(set(list_of_genes))
def get_list_of_domain_in_neigh(self, pfam_index, gene, domains):
to_counter = []
party = []
party.append(gene)
for part in pfam_index:
party.append(domains[part])
to_counter.append(domains[part])
# neighbourhood_complete.append(party)
# pdb.set_trace()
return to_counter
def multiple_test_correction(self, some_dataframe, correction_met):
if correction_met == 'none':
return some_dataframe
else:
value_to_correct = [float(x) for x in some_dataframe.PVALUE.tolist()]
reject, pvals_corrected, alphaSidak, alphaBonf = correction(pvals=value_to_correct,
method=correction_met,
is_sorted=False, returnsorted=False)
pvals = pvals_corrected.tolist()
some_dataframe.PVALUE = pvals
return some_dataframe
def multiple_test_correction_list(self,some_tuple_list,correction_met):
pvalues = [float(x[0]) for x in some_tuple_list]
density = [x[1] for x in some_tuple_list]
if correction_met == 'none':
output = [(i, j) for i, j in zip(pvalues, density)]
else:
reject, pvals_corrected, alphaSidak, alphaBonf = correction(pvals=pvalues,
method=correction_met,
is_sorted=False, returnsorted=False)
pvals_after_corr = pvals_corrected.tolist()
output = [(i, j) for i, j in zip(pvals_after_corr, density)]
return output
def cutoff_value(self, some_dataframe, cutoff):
domain_list = list(some_dataframe.index)
if cutoff == 'none':
return some_dataframe
elif cutoff == '0':
for i in domain_list:
diff = float(some_dataframe.loc[i, 'PVALUE'])
if diff < 0 and diff > 0:
some_dataframe = some_dataframe.drop([i])
return some_dataframe
else:
cutoff = float(cutoff)
for i in domain_list:
diff = float(some_dataframe.loc[i, 'PVALUE'])
if diff > cutoff:
some_dataframe = some_dataframe.drop([i])
return some_dataframe
def sort_table(self, some_dataframe):
sorted_data = some_dataframe.sort_values('PVALUE', ascending=True)
return sorted_data
def add_information(self, some_dataframe, dictionary):
indeksy = list(some_dataframe.index)
for i in indeksy:
try:
pfam = i[0:2] + i[4:]
family = dictionary[pfam][0]
summary = dictionary[pfam][1]
some_dataframe.at[i, 'Family'] = family
some_dataframe.at[i, 'Summary'] = summary
except KeyError:
continue
return some_dataframe
def pfam_for_pf(self, dataframe):
"""Final customization of dataframe
--> PF02696 instead of pfam02696
--> PVALUE in 10e-3 format
--> In what percentage % format
--> avg occurences and density have now 3 digits after coma
--> drop NOam
-->
"""
indexy = dataframe.index
for i in indexy:
dataframe = dataframe.rename(index={i: i[:2].upper() + i[4:]})
dataframe['PVALUE'] = dataframe['PVALUE'].map('{:.3e}'.format)
dataframe['In what percentage'] = dataframe['In what percentage'].map('{:.3%}'.format)
dataframe = dataframe.round({"average occurence in neighbourhood": 3, "average occurence in genome": 3,
"Density difference": 3})
if "NOam" in indexy:
dataframe = dataframe.drop(index="NOam")
# dataframe = dataframe.style.format({'In what percentage': '{:,.3%}'.format})
return dataframe
def collect_gene_without_genome(self, gene):
with open('/home/djangoadmin/final_site-project/important_files/missing_genes/data_to_download.txt', 'a+') as output:
output.write(gene)
output.write("\n")
def make_genera_statistic(self, genome_list):
with open("/home/djangoadmin/final_site-project/important_files/genera_statistics","r") as handler:
data = [x.strip().split() for x in handler] # data to lista list [[genom,genus],[genome,genus]]
genomes= [x[0] for x in data]
genera = [x[1] for x in data]
just_genera = []
for genome in genome_list:
indeks = genomes.index(genome)
just_genera.append(genera[indeks])
counter_genera = Counter(just_genera)
zliczanie = []
for genus,value in counter_genera.items():
zliczanie.append((genus, value/len(genome_list)))
return zliczanie
def go(self):
################################################################################################################
# VULTR
query_data = self.open_query("/home/djangoadmin/final_site-project" + self.user_list_of_genes)
domain_information = self.collect_pfam_domain_description(
"/home/djangoadmin/final_site-project/important_files/domain_information")
genome_gene_reference = self.open_multiple_column_file(
"/home/djangoadmin/final_site-project/important_files/genomes_map")
genome_size_in_gene = self.open_multiple_column_file(
"/home/djangoadmin/final_site-project/important_files/GENOME_ID_SIZE_IN_GENE.txt")
################################################################################################################
################################################################################################################
# # LOCAL
# domain_information = self.collect_pfam_domain_description(
# '/mnt/d/45.76.38.24/final_site-project/important_files/domain_information')
# # open file about gene in genomes [genome min(gene) max(gene)]
# genome_gene_reference = self.open_multiple_column_file(
# '/mnt/d/45.76.38.24/final_site-project/important_files/genomes_map')
# # open file about genome size in gene and split to 2 lists
# genome_size_in_gene = self.open_multiple_column_file(
# '/mnt/d/45.76.38.24/final_site-project/important_files/GENOME_ID_SIZE_IN_GENE.txt')
################################################################################################################
################################################################################################################
# # KLASTER
# domain_information = self.collect_pfam_domain_description(
# '/home/klaster/ProFaNA v1.0/important_files/domain_information')
# genome_gene_reference = self.open_multiple_column_file(
# '/home/klaster/ProFaNA v1.0/important_files/genomes_map')
# genome_size_in_gene = self.open_multiple_column_file(
# '/home/klaster/ProFaNA v1.0/important_files/GENOME_ID_SIZE_IN_GENE.txt')
################################################################################################################
print("Checkpoint #1 Data loaded", datetime.datetime.now())
genome_ids = [x[0] for x in genome_size_in_gene]
genome_size = [x[1] for x in genome_size_in_gene]
genome_size_in_gene = None
just_neigh_data = []
genomes_with_domains = []
neigh_genome_size = []
print("DLOK TIME START", datetime.datetime.now())
# Loop through list of genes and do all stuff
percentage_counter = Counter()
for gene in query_data:
try:
correct_genome = self.find_correct_genome(gene, genome_gene_reference)
correct_size = self.get_genome_size_in_gene(correct_genome, genome_ids, genome_size)
ref_gene, ref_start_coord, ref_end_coord, ref_orient, ref_domain, ref_contig = self.create_6_lists(
correct_genome)
search_result = self.search_for_gene_in_genome(gene, ref_gene, ref_start_coord, ref_end_coord,
ref_orient,
ref_contig)
if self.user_distance_value != 0:
last_coordiate, first_coordinate, gene_beg, gene_end, searched_gene_orientation, = \
self.get_range_coordinates(search_result, self.user_distance_value)
pfam_index_to_neigh = self.get_domain_both_strands(ref_start_coord, ref_end_coord, last_coordiate,
first_coordinate, gene_beg, gene_end, ref_contig,
search_result)
else:
pfam_index_to_neigh = self.get_domain_both_zeros(ref_gene, search_result[4])
genes_in_neigh = self.get_list_of_genes_in_neigh(ref_gene, pfam_index_to_neigh)
number_of_genes_in_neigh = self.get_size_in_genes(genes_in_neigh)
whole_neigh = self.get_list_of_domain_in_neigh(pfam_index_to_neigh, gene, ref_domain)
just_neigh_data.append(whole_neigh)
genomes_with_domains.append(correct_genome)
neigh_genome_size.append((number_of_genes_in_neigh, correct_size))
percentage_counter += Counter(set(whole_neigh))
except ValueError:
self.collect_gene_without_genome(gene)
continue
genera_statistic = self.make_genera_statistic(genomes_with_domains)
print("DLOK TIME OVER", datetime.datetime.now())
print("concatenate_domain")
alls = []
neigh_counter = Counter()
for i in just_neigh_data:
for j in i:
if j not in alls:
alls.append(j)
genome_counter = Counter()
print("MATRIX CREATING", datetime.datetime.now())
counter = 0
big_data = []
for domain_list, genome_in_domain, ng_size in zip(just_neigh_data, genomes_with_domains, neigh_genome_size):
counter += 1
part = []
genes, start_coord, end_coord, orientation, domains, contig = self.create_6_lists(genome_in_domain)
genome_domains_counter = Counter(domains)
genome_counter += genome_domains_counter
neigh_domains_counter = Counter(domain_list)
neigh_counter += neigh_domains_counter
if counter != 100 and domain_list != just_neigh_data[-1]:
temp_data = []
for fine_domain in alls:
dlok = neigh_domains_counter[fine_domain] / int(ng_size[0])
dglob = genome_domains_counter[fine_domain] / int(ng_size[1])
diff = dlok - dglob
part.append(str(diff))
big_data.append(part)
if counter != 100 and domain_list == just_neigh_data[-1]:
# pdb.set_trace()
for place, domain in enumerate(alls):
data_to_save = [x[place] for x in big_data]
with open('temp_data/' + domain, 'a+') as output:
for num in data_to_save:
if num != '0.0':
output.write(num)
output.write("\n")
big_data = []
counter = 0
elif counter == 100:
for fine_domain in alls:
dlok = neigh_domains_counter[fine_domain] / int(ng_size[0])
dglob = genome_domains_counter[fine_domain] / int(ng_size[1])
diff = dlok - dglob
part.append(str(diff))
big_data.append(part)
for place, domain in enumerate(alls):
data_to_save = [x[place] for x in big_data]
with open('/home/djangoadmin/final_site-project/scripts/temp_data/' + domain, 'a+') as output:
for num in data_to_save:
if num != '0.0':
output.write(num)
output.write("\n")
big_data = []
counter = 0
print("MATRIX OVER", datetime.datetime.now())
print("Wilcoxon start", datetime.datetime.now())
counter = 0
scores = []
# percentage = []
for i in alls:
counter += 1
data_to_calculate = self.open_singleline_num("/home/djangoadmin/final_site-project/scripts/temp_data/" + i)
for_percentage = [float(x) for x in data_to_calculate if x > 0]
# percentage.append(len(for_percentage) / len(just_neigh_data))
wynik = test(data_to_calculate, zero_method="wilcox")
mean = sum(data_to_calculate) / len(just_neigh_data)
scores.append((wynik.pvalue, mean))
scores_after_correction = self.multiple_test_correction_list(scores, self.user_correction)
print("Wilcoxon OVER", datetime.datetime.now())
print("Collecting data START", datetime.datetime.now())
najlepsze_dane = pd.DataFrame(columns=['PVALUE', 'occurence in neighborhoods',
'average occurence in neighborhood', 'occurence genomes',
'average occurence in genome', 'Density difference',
'In what percentage',
'Family', 'Summary'])
for domena, wynik in zip(alls, scores_after_correction):
if self.user_distance_value == 0:
if wynik[1] > 0:
najlepsze_dane.at[domena, 'PVALUE'] = wynik[0]
najlepsze_dane.at[domena, 'Density difference'] = wynik[1]
najlepsze_dane.at[domena, 'In what percentage'] = percentage_counter[domena] / len(just_neigh_data)
else:
najlepsze_dane.at[domena, 'PVALUE'] = 1.0
najlepsze_dane.at[domena, 'Density difference'] = wynik[1]
najlepsze_dane.at[domena, 'In what percentage'] = \
[domena] / len(just_neigh_data)
else:
if wynik[1] > 0:
najlepsze_dane.at[domena, 'PVALUE'] = wynik[0]
najlepsze_dane.at[domena, 'Density difference'] = wynik[1]
najlepsze_dane.at[domena, 'In what percentage'] = percentage_counter[domena] / len(just_neigh_data)
for domain in najlepsze_dane.index.to_list():
najlepsze_dane.at[domain, 'occurence genomes'] = genome_counter[domain]
najlepsze_dane.at[domain, 'average occurence in genome'] = genome_counter[domain] / len(
set(genomes_with_domains))
najlepsze_dane.at[domain, 'occurence in neighborhoods'] = neigh_counter[domain]
najlepsze_dane.at[domain, 'average occurence in neighborhood'] = neigh_counter[domain] / len(
just_neigh_data)
print("Collecting data OVER", datetime.datetime.now())
print("Customizing_data START", datetime.datetime.now())
# after_test = self.multiple_test_correction(najlepsze_dane, self.user_correction)
after_cutoff = self.cutoff_value(najlepsze_dane, self.user_cutoff)
sorted_table = self.sort_table(after_cutoff)
added_information = self.add_information(sorted_table, domain_information)
final_data = self.pfam_for_pf(added_information)
print("Customizing_data OVER", datetime.datetime.now())
message_for_additional_data = "Pfam domain , PVALUE, occurence in neighbourhoods, " \
"average occurence in neighbourhood ,occurence genomes, " \
"average occurence in genome, avg DLOK-DGLOB, In what percentage?, " \
"Family, Summary"
self.save_complete(self.user_output, message_for_additional_data, final_data)
class SuperSpeedAnalysisFromDomain:
def __init__(self, user_pfam, user_distance, user_organisms, user_cutoff, user_correction,
user_strand, user_output,skip_negative):
""" Initializing input data
Inputs:
user_pfam: str (from pfam00000 to pfam99999)
user_distance: str non negative integer 1-20000
user_organisms: str
user_cutoff: str (none, 0, 0.00001, 0.00005, 0.0001, 0.0005, 0.001, 0.005,
0.01, 0.05, 0.1, 0.2, 0.5)
user_correction: str (none, bonferroni, fdr_bh)
user_strand: str (both)
user_output: str
"""
self.user_pfam = user_pfam
self.user_distance = user_distance
self.user_organisms = user_organisms
self.user_cutoff = user_cutoff
self.user_correction = user_correction
self.user_strand = user_strand
self.user_output = user_output
self.skip_negative = skip_negative
def open_singleline(self, path_to_file):
""" Opens file that contain 1 column and strip it by space.
Inputs:
path_to_file: str
"""
with open(path_to_file, 'r') as f:
file_names = [line.strip() for line in f]
return file_names
def open_singleline_num(self, path_to_file):
""" Opens file that contain 1 column and strip it by space. """
with open(path_to_file, 'r') as f:
file_names = [float(line.strip()) for line in f]
return file_names
def open_multiple_line(self, path_to_file):
""" Opens file that contains data about single genome """
plik = []
with open(path_to_file) as inputfile:
for line in inputfile:
plik.append(line.strip().split())
return plik
def save_data(self, file_name, message_for_output, message_for_additional_data, message_down, complete_data):
""" Saves all stuff together as one file """
# # LOCAL
# with open('/mnt/d/45.76.38.24/final_site-project' + file_name + '.txt', 'w') as output_file:
# VULTR
with open('/home/djangoadmin/final_site-project' + file_name, 'w') as output_file:
output_file.write(message_for_output)
output_file.write("\n")
output_file.write(message_down)
output_file.write("\n")
output_file.write(message_for_additional_data)
output_file.write("\n")
# output_file.write(complete_data)
for row in complete_data.iterrows():
index, data = row
pre = data.tolist()
output_file.write(index)
output_file.write("\t")
output_file.write("\t".join([str(i) for i in pre]))
output_file.write("\n")
def create_six_list(self, file):
""" Open single genome file chew it and return 6 lists -> GENE, START_COORD,
END_COORDS ,ORIENTATION, DOMAINS """
# KLASTER
# data = self.open_multiple_line("/home/klaster/ProFaNA v1.0/nowa_baza_danych/"+file)
# LOCAL
# data = self.open_multiple_line("/mnt/d/45.76.38.24/final_site-project/important_files/database_file/"+file)
# VULTR
data = self.open_multiple_line("/home/djangoadmin/final_site-project/important_files/nowa_baza_danych/" + file)
start_coord = []
end_coord = []
orientation = []
domains = []
genes = []
contig = []
for bit in data:
genes.append(int(bit[0]))
start_coord.append(int(bit[1]))
end_coord.append(int(bit[2]))
orientation.append(bit[3])
domains.append(bit[4])
contig.append(bit[5])
return genes, start_coord, end_coord, orientation, domains, contig
def open_database(self,tax):
tax = tax.replace("_", " ")
if tax == "all genomes":
# LOCAL
# with open("/mnt/d/45.76.38.24/final_site-project/important_files/all_genomes.txt","r") as handler:
# VULTR
with open("/home/djangoadmin/final_site-project/important_files/all_genomes","r") as handler:
genomes = [x.strip() for x in handler]
return genomes
else:
# LOCAL
# with open('/mnt/d/45.76.38.24/final_site-project/important_files/database.json', "r") as handler:
# VULTR
with open("/home/djangoadmin/final_site-project/important_files/database.json", "r") as handler:
data = json.load(handler)
if tax in data.keys():
genomes = []
for genus, genome in data[tax].items():
genomes += genome
return genomes
else:
for family,genera in data.items():
if tax in genera:
genomes = data[family][tax]
return genomes
def genome_size_in_gene(self, genome_id, list_of_genome, list_of_size):
""" Takes genome's id, list of genome and lists with data about how much genes in genome"""
index_genome = list_of_genome.index(genome_id)
genome_size_in_gene = list_of_size[index_genome]
return genome_size_in_gene
def size_in_genes(self, genome_or_genes):
""" Takes list of genes and returns size of neighbourhood """
list_of_genes = []
for gene in genome_or_genes:
list_of_genes.append(gene)
return len(set(list_of_genes))
def list_of_genes_in_neigh(self, list_of_genes, index_list):
""" Takes overall gene's list in genome and creates complete list of genes in neighbourhood """
list_of_genes_in_neigh = []
for pfam_domain in index_list:
list_of_genes_in_neigh.append(list_of_genes[pfam_domain])
return list_of_genes_in_neigh
def searching_for_domain_in_genome(self, pfam, start_coord, end_coord, orient, domains, contig, genes):
"""
Takes user's pfam domain searches through lists contains coordinates,
orientation, domains, contigs and returns complete data about all
users' domains in genome
"""
coords = []
coords_counter = 0
for domain in domains:
one_coords_part = []
if domain == pfam:
orientation_pfam_domain = orient[coords_counter]
one_coords_part.append(start_coord[coords_counter])
one_coords_part.append(end_coord[coords_counter])
one_coords_part.append(orientation_pfam_domain)
one_coords_part.append(contig[coords_counter])
one_coords_part.append(genes[coords_counter])
coords.append(one_coords_part)
coords_counter += 1
else:
coords_counter += 1
continue
return coords
def presence_confirmation(self, coords, file, pfam):
"""
Just prints out information how many pfam domains is in each genome
during analysis propably i will have to remove it before putting it to website ...
"""
if len(coords) == 0:
print("In genome " + file + " pfam domain you have been searching do not exist")
elif len(coords) == 1:
print("In genome " + file + " there is " + str(len(coords)) + " " + pfam + " domain")
else:
print("In genome " + file + " there are " + str(len(coords)) + " " + pfam + " domains")
def get_range_coordinates(self, target_pfam, distance):
"""
Based on how large neighbourhood user wants to analyze creates
points FROM and TO, additionaly shows where main user's pfam begins and ENDS
with orientation on strands
"""
last_coordinate = target_pfam[1] + int(distance)
first_coordinate = target_pfam[0] - int(distance)
pfam_beg = target_pfam[0]
pfam_end = target_pfam[1]
searched_pfam_orientation = target_pfam[2]
return last_coordinate, first_coordinate, pfam_beg, pfam_end, searched_pfam_orientation
def get_domain_both_zeros(self, ref_gene, q_gene):
index_list_gene = []
counter = 0
for gene in ref_gene:
if gene == int(q_gene):
index_list_gene.append(counter)
counter += 1
return index_list_gene
def get_domains_both_strands(self, start_coord, end_coord, last_coordinate, first_coordinate, pfam_beg,
pfam_end, contig, point):
pfam_index_to_neigh = []
s_coord_counter = 0
for s_coord in start_coord:
if s_coord <= last_coordinate and s_coord >= pfam_beg and contig[s_coord_counter] == point[
3] and s_coord_counter not in pfam_index_to_neigh:
pfam_index_to_neigh.append(s_coord_counter)
s_coord_counter += 1
else:
s_coord_counter += 1
continue
e_coord_counter = 0
for e_coord in end_coord:
if e_coord >= first_coordinate and e_coord <= pfam_end and contig[e_coord_counter] == point[
3] and e_coord_counter not in pfam_index_to_neigh:
pfam_index_to_neigh.append(e_coord_counter)
e_coord_counter += 1
else:
e_coord_counter += 1
continue
return pfam_index_to_neigh
def collect_pfam_domain_description(self, file):
""" Opens file only to gather information"""
data = {}
with open(file) as inputfile:
for line in inputfile:
try:
one_line = line.strip().split("@")
domena = one_line[0]
pre_family = one_line[1][8:]
delete_this = "(" + domena.upper() + ")"
family = pre_family.replace(delete_this, "")
summary = one_line[2][9:]
data[domena] = (family, summary)
except IndexError:
continue
return data
def get_domains_plus_minus_strand(self, start_coord, end_coord, last_coordinate, first_coordinate,
pfam_beg, pfam_end, contig, point, orientation):
pfam_index_to_neigh_same_strand = []
pfam_index_to_neigh_oposite_strand = []
s_coord_counter = 0
for s_coord in start_coord:
if s_coord <= last_coordinate and s_coord >= pfam_beg and orientation[s_coord_counter] == point[2] and \
contig[s_coord_counter] == point[3] and s_coord_counter not in pfam_index_to_neigh_same_strand:
pfam_index_to_neigh_same_strand.append(s_coord_counter)
s_coord_counter += 1
elif s_coord <= last_coordinate and s_coord >= pfam_beg and orientation[s_coord_counter] != point[2] and \
contig[s_coord_counter] == point[
3] and s_coord_counter not in pfam_index_to_neigh_oposite_strand:
pfam_index_to_neigh_oposite_strand.append(s_coord_counter)
s_coord_counter += 1
else:
s_coord_counter += 1
continue
e_coord_counter = 0
for e_coord in end_coord:
if e_coord >= first_coordinate and e_coord <= pfam_end and orientation[e_coord_counter] == point[2] and \
contig[e_coord_counter] == point[3] and e_coord_counter not in pfam_index_to_neigh_same_strand:
pfam_index_to_neigh_same_strand.append(e_coord_counter)
e_coord_counter += 1
elif e_coord >= first_coordinate and e_coord <= pfam_end and orientation[e_coord_counter] != point[
2] and contig[e_coord_counter] == point[
3] and e_coord_counter not in pfam_index_to_neigh_oposite_strand:
pfam_index_to_neigh_oposite_strand.append(e_coord_counter)
e_coord_counter += 1
else:
e_coord_counter += 1
continue
return pfam_index_to_neigh_same_strand, pfam_index_to_neigh_oposite_strand
def get_list_of_domain_in_neigh(self, pfam_index, file, domains):
to_counter = []
party = []
party.append(file)
for part in pfam_index:
party.append(domains[part])
to_counter.append(domains[part])
# neighbourhood_complete.append(party)
return to_counter
def counting_dlok_or_dglob(self, some_counter, genome_neigh_size, mighty_domains):
dlok_glob = []
for domain_mighty in mighty_domains:
if domain_mighty in some_counter.keys():
lok_glob = some_counter.get(domain_mighty) / int(genome_neigh_size)
dlok_glob.append(lok_glob)
else:
dlok_glob.append(0)
return dlok_glob
def count_for_dlok(self, somecounter, neigh_size, tax_name, dlok_dataframe):
for k, v in somecounter.items():
dlok_dataframe.at[tax_name, k] = v / neigh_size
def multiple_test_correction(self, some_dataframe, correction_met):
if correction_met == 'none':
return some_dataframe
else:
value_to_correct = [float(x) for x in some_dataframe.PVALUE.tolist()]
reject, pvals_corrected, alphaSidak, alphaBonf = correction(pvals=value_to_correct,
method=correction_met,
is_sorted=False, returnsorted=False)
pvals = pvals_corrected.tolist()
some_dataframe.PVALUE = pvals
return some_dataframe
def multiple_test_correction_list(self,some_tuple_list,correction_met):
pvalues = [float(x[0]) for x in some_tuple_list]
density = [x[1] for x in some_tuple_list]
if correction_met == 'none':
output = [(i, j) for i, j in zip(pvalues, density)]
else:
reject, pvals_corrected, alphaSidak, alphaBonf = correction(pvals=pvalues,
method=correction_met,
is_sorted=False, returnsorted=False)
pvals_after_corr = pvals_corrected.tolist()
output = [(i, j) for i, j in zip(pvals_after_corr, density)]
return output
def cutoff_value(self, some_dataframe, cutoff):
domain_list = list(some_dataframe.index)
if cutoff == 'none':
return some_dataframe
elif cutoff == '0':
for i in domain_list:
diff = float(some_dataframe.loc[i, 'PVALUE'])
if diff < 0 and diff > 0:
some_dataframe = some_dataframe.drop([i])
return some_dataframe
else:
cutoff = float(cutoff)
for i in domain_list:
diff = float(some_dataframe.loc[i, 'PVALUE'])
if diff > cutoff:
some_dataframe = some_dataframe.drop([i])
return some_dataframe
def sort_table(self, some_dataframe):
sorted_data = some_dataframe.sort_values('PVALUE', ascending=True)
return sorted_data
def add_information(self, some_dataframe, dictionary):
indeksy = list(some_dataframe.index)
for i in indeksy:
try:
pfam = i[0:2] + i[4:]
family = dictionary[pfam][0]
summary = dictionary[pfam][1]
some_dataframe.at[i, 'Family'] = family
some_dataframe.at[i, 'Summary'] = summary
except KeyError:
continue
return some_dataframe
def pfam_for_pf(self, dataframe):
"""Final customization of dataframe
--> PF02696 instead of pfam02696
--> PVALUE in 10e-3 format
--> In what percentage % format
--> avg occurences and density have now 3 digits after coma
--> drop NOam
"""
indexy = dataframe.index
for i in indexy:
dataframe = dataframe.rename(index={i: i[:2].upper() + i[4:]})
dataframe['PVALUE'] = dataframe['PVALUE'].map('{:.3e}'.format)
dataframe['In what percentage'] = dataframe['In what percentage'].map('{:.3%}'.format)
dataframe['average occurence in neighborhood'] = dataframe['average occurence in neighborhood'].map('{:.3}'.format)
dataframe['Density difference'] = dataframe['Density difference'].map('{:.3}'.format)
dataframe['average occurence in genome'] = dataframe['average occurence in genome'].map('{:.3}'.format)
# dataframe = dataframe.round({"average occurence in neighborhood": 3,"average occurence in genome": 3,
# "Density difference": 3})
if "NOam" in indexy:
dataframe = dataframe.drop(index="NOam")
# dataframe = dataframe.style.format({'In what percentage': '{:,.3%}'.format})
return dataframe
def go(self):
"""Zipping all functions and execute them"""
################################################################################################################
# JUST LOCALLY
# print("checkpoint #1")
# genome_id_size_in_gene = self.open_multiple_line(
# '/mnt/d/45.76.38.24/final_site-project/important_files/GENOME_ID_SIZE_IN_GENE.txt')
# domain_information = self.collect_pfam_domain_description(
# '/mnt/d/45.76.38.24/final_site-project/important_files/domain_information')
################################################################################################################
################################################################################################################
# # KLASTER
#
# print("checkpoint #1")
# # KLASTER