-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsolver.cpp
175 lines (148 loc) · 6.28 KB
/
solver.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
/*Code by Dmitry Khovratovich, 2016
CC0 license
*/
#include "blake/blake2.h"
#include "solver.h"
#include "utils.cpp"
#include <ctime>
#include <random>
#include <algorithm>
using namespace _POW;
using namespace std;
void Solver::AllocateMemory()
{
Integer tuple_n = ((int64_t)1) << (input.n / (input.k + 1));
Tuple default_tuple(input.k);
std::vector<Tuple> def_tuples(LIST_LENGTH, default_tuple);
tupleList = std::vector<std::vector<Tuple>>(tuple_n, def_tuples);
filledList= std::vector<unsigned>(tuple_n, 0);
solutions.resize(0);
forks.resize(0);
}
void Solver::FillMemory(Integer length)
{
Integer inArr[SEED_LENGTH + 2];
input.makeInputArray(inArr);
inArr[SEED_LENGTH] = (nonce + shift) % MAX_NONCE;
Integer buf[MAX_N_BYTES / 4];
Integer blocksCount = input.n / (input.k + 1);
for (unsigned i = 0; i < length; ++i, ++inArr[SEED_LENGTH + 1]) {
blake2b((uint8_t*)buf, &inArr, NULL, sizeof(buf), sizeof(inArr), 0);
Integer index = buf[0] >> (32 - blocksCount);
unsigned count = filledList[index];
if (count < LIST_LENGTH) {
for (unsigned j = 1; j < (input.k + 1); ++j) {
tupleList[index][count].blocks[j - 1] = buf[j] >> (32 - blocksCount);
}
tupleList[index][count].reference = i;
filledList[index]++;
}
}
}
void Solver::InitMemory(Integer length) {
auto fill_start = rdtsc();
AllocateMemory();
FillMemory(length);
auto fill_end = rdtsc();
if(input.verbose) {
printf("\tMemory initialization took: %2.2f Mcycles \n", (double) (fill_end - fill_start) / (1UL << 20));
}
}
std::vector<Integer> Solver::ResolveTreeByLevel(Fork fork, unsigned level) {
if (level == 0)
return std::vector<Integer>{fork.ref1, fork.ref2};
auto v1 = ResolveTreeByLevel(forks[level - 1][fork.ref1], level - 1);
auto v2 = ResolveTreeByLevel(forks[level - 1][fork.ref2], level - 1);
v1.insert(v1.end(), v2.begin(), v2.end());
return v1;
}
std::vector<Integer> Solver::ResolveTree(Fork fork) {
return ResolveTreeByLevel(fork, forks.size());
}
void Solver::ResolveCollisions(bool lastStep) {
const unsigned tableLength = tupleList.size(); // кількість рядків хеш-таблиці
const unsigned maxNewCollisions = tupleList.size() * 3; // максимально можлива кількість колізій
const unsigned newBlocks = tupleList[0][0].blocks.size() - 1;// кількість блоків у майбутніх колізіях
std::vector<Fork> newForks(maxNewCollisions); // массив форків, які будуть створені на цьому кроці
auto tableRow = vector<Tuple>(LIST_LENGTH, Tuple(newBlocks)); // рядок хеш таблиці
vector<vector<Tuple>> collisionList(tableLength,tableRow); // список знайдених колізій
std::vector<unsigned> newFilledList(tableLength,0); // кількість елементів кожного рядка
Integer newColls = 0; // кількість знайдених колізій
for (unsigned i = 0; i < tableLength; ++i) {
for (unsigned j = 0; j < filledList[i]; ++j) {
for (unsigned m = j + 1; m < filledList[i]; ++m) {
Integer newIndex = tupleList[i][j].blocks[0] ^ tupleList[i][m].blocks[0];
Fork newFork = Fork(tupleList[i][j].reference, tupleList[i][m].reference);
if (lastStep) {
if (newIndex == 0) { // знайдено розв'язок
std::vector<Integer> solution_inputs = ResolveTree(newFork);
solutions.emplace_back(input, (nonce + shift) % MAX_NONCE, solution_inputs);
}
}
else {
if (newFilledList[newIndex] < LIST_LENGTH && newColls < maxNewCollisions) {
for (unsigned l = 0; l < newBlocks; ++l) {
collisionList[newIndex][newFilledList[newIndex]].blocks[l]
= tupleList[i][j].blocks[l+1] ^ tupleList[i][m].blocks[l+1];
}
newForks[newColls] = newFork;
collisionList[newIndex][newFilledList[newIndex]].reference = newColls;
newFilledList[newIndex]++;
newColls++;
}
}
}
}
}
forks.push_back(newForks);
std::swap(tupleList, collisionList);
std::swap(filledList, newFilledList);
}
unsigned getRandomShift() {
std::random_device rd;
std::mt19937 mt(rd());
std::uniform_int_distribution<unsigned> dist(0, MAX_NONCE - 1);
return dist(mt);
}
Proof Solver::FindProof(){
nonce = 0;
shift = getRandomShift();
unsigned blocksCount = input.n / (input.k + 1);
printf("Random shift: %d\n", shift);
while (nonce < MAX_NONCE) {
if(input.verbose) {
printf("Testing nonce %d\n", (nonce + shift) % MAX_NONCE);
}
InitMemory(4UL << (blocksCount - 1));
auto start_collisions = rdtsc();
for (unsigned i = 1; i <= input.k; ++i) {
auto resolve_start = rdtsc();
ResolveCollisions(i == input.k);
auto resolve_end = rdtsc();
if(input.verbose) {
printf("\tResolving collisions for block %d: %2.2f Mcycles\n",
i, (double) (resolve_end - resolve_start) / (1UL << 20));
}
}
auto stop_cycles = rdtsc();
double mcycles_d = (double)(stop_cycles - start_collisions) / (1UL << 20);
if(input.verbose) {
printf("\tChecked nonce %d:\n\t\tspent %2.2f Mcycles\n",
(nonce + shift) % MAX_NONCE, mcycles_d);
}
// Перевірка на дублі
for (auto & solution : solutions) {
auto vec = solution.inputs;
std::sort(vec.begin(), vec.end());
bool dup = false;
for (unsigned k = 0; k < vec.size() - 1; ++k) {
if (vec[k] == vec[k + 1])
dup = true;
}
if (!dup)
return solution;
}
nonce++;
}
return Proof(input, nonce - 1, std::vector<uint32_t>());
}