- Add Deprecation warnings and migration helpers in order to facilitate the Kartothek version 6.0.0 migration.
- Removed warning for distinct categoricals (#501)
- Remove support for Python 3.6
- Allow
pyarrow<7
as a dependency.
- Add :meth:`~kartothek.io.eager.copy_dataset` to copy and optionally rename datasets within one store or between stores (eager only)
- Add renaming option to :meth:`~kartothek.io.eager_cube.copy_cube`
- Add predicates to cube condition converter to :meth:`~kartothek.utils.predicate_converter`
This release rolls all the changes introduced with 4.x back to 3.20.0.
As the incompatibility between 4.0 and 5.0 will be an issue for some customers, we encourage you to use the very stable kartothek 3.20.0 and not version 4.x.
Please refer the Issue #471 for further information.
- Pin dask to not use 2021.5.1 and 2020.6.0 (#475)
- Fix a bug in
MetaPartition._reconstruct_index_columns
that would raise anIndexError
when loading few columns of a dataset with many primary indices.
- Fixed dataset corruption after updates when table names other than "table" are used (#445).
This is a major release of kartothek with breaking API changes.
- Removal of complex user input (see gh427)
- Removal of multi table feature
- Removal of kartothek.io.merge module
- class :class:`~kartothek.core.dataset.DatasetMetadata` now has an attribute called schema which replaces the previous attribute table_meta and returns only a single schema
- All outputs which previously returned a sequence of dictionaries where each key-value pair would correspond to a table-data pair now returns only one :class:`pandas.DataFrame`
- All read pipelines will now automatically infer the table to read such that it is no longer necessary to provide table or table_name as an input argument
- All writing pipelines which previously supported a complex user input type now expose an argument table_name which can be used to continue usage of legacy datasets (i.e. datasets with an intrinsic, non-trivial table name). This usage is discouraged and we recommend users to migrate to a default table name (i.e. leave it None / table)
- All pipelines which previously accepted an argument tables to select the subset of tables to load no longer accept this keyword. Instead the to-be-loaded table will be inferred
- Trying to read a multi-tabled dataset will now cause an exception telling users that this is no longer supported with kartothek 4.0
- The dict schema for :meth:`~kartothek.core.dataset.DatasetMetadataBase.to_dict` and :meth:`~kartothek.core.dataset.DatasetMetadata.from_dict` changed replacing a dictionary in table_meta with the simple schema
- All pipeline arguments which previously accepted a dictionary of sequences to describe a table specific subset of columns now accept plain sequences (e.g. columns, categoricals)
- Remove the following list of deprecated arguments for io pipelines * label_filter * central_partition_metadata * load_dynamic_metadata * load_dataset_metadata * concat_partitions_on_primary_index
- Remove output_dataset_uuid and df_serializer from :func:`kartothek.io.eager.commit_dataset` since these arguments didn't have any effect
- Remove metadata, df_serializer, overwrite, metadata_merger from :func:`kartothek.io.eager.write_single_partition`
- :func:`~kartothek.io.eager.store_dataframes_as_dataset` now requires a list as an input
- Default value for argument date_as_object is now universally set to
True
. The behaviour for False will be deprecated and removed in the next major release - No longer allow to pass delete_scope as a delayed object to :func:`~kartothek.io.dask.dataframe.update_dataset_from_ddf`
- :func:`~kartothek.io.dask.dataframe.update_dataset_from_ddf` and :func:`~kartothek.io.dask.dataframe.store_dataset_from_ddf` now return a dd.core.Scalar object. This enables all dask.DataFrame graph optimizations by default.
- Remove argument table_name from :func:`~kartothek.io.dask.dataframe.collect_dataset_metadata`
This will be the final release in the 3.X series. Please ensure your existing codebase does not raise any DeprecationWarning from kartothek and migrate your import paths ahead of time to the new :mod:`kartothek.api` modules to ensure a smooth migration to 4.X.
- Introduce :mod:`kartothek.api` as the public definition of the API. See also :doc:`versioning`.
- Introduce DatasetMetadataBase.schema to prepare deprecation of table_meta
- :func:`~kartothek.io.eager.read_dataset_as_dataframes` and :func:`~kartothek.io.iter.read_dataset_as_dataframes__iterator` now correctly return categoricals as requested for misaligned categories.
- Allow
pyarrow==3
as a dependency. - Fix a bug in :func:`~kartothek.io_components.utils.align_categories` for dataframes with missings and of non-categorical dtype.
- Fix an issue with the cube index validation introduced in v3.19.0 (#413).
- Fix an issue where updates on cubes or updates on datatsets using dask.dataframe might not update all secondary indices, resulting in a corrupt state after the update
- Expose compression type and row group chunk size in Cube interface via optional parameter of type :class:`~kartothek.serialization.ParquetSerializer`.
- Add retries to :func:`~kartothek.serialization._parquet.ParquetSerializer.restore_dataframe` IOErrors on long running ktk + dask tasks have been observed. Until the root cause is fixed, the serialization is retried to gain more stability.
- Add
cube.suppress_index_on
to switch off the default index creation for dimension columns - Fixed the import issue of zstd module for kartothek.core _zmsgpack.
- Fix a bug in kartothek.io_components.read.dispatch_metapartitions_from_factory where dispatch_by=[] would be treated like dispatch_by=None, not merging all dataset partitions into a single partitions.
- Allow
pyarrow==2
as a dependency.
- #378 Improve logging information for potential buffer serialization errors
- Fix GitHub #375 by loosening checks of the supplied store argument
- Improve performance for "in" predicate literals using long object lists as values
- :func:`~kartothek.io.eager.commit_dataset` now allows to modify the user metadata without adding new data.
- Fix an issue where :func:`~kartothek.io.dask.dataframe.collect_dataset_metadata` would return improper rowgroup statistics
- Fix an issue where :func:`~kartothek.io.dask.dataframe.collect_dataset_metadata` would execute
get_parquet_metadata
at graph construction time - Fix a bug in :func:`kartothek.io.eager_cube.remove_partitions` where all partitions were removed instead of non at all.
- Fix a bug in :meth:`~kartothek.core.dataset.DatasetMetadataBase.get_indices_as_dataframe` which would
raise an
IndexError
if indices were empty or had not been loaded
- Allow filtering of nans using "==", "!=" and "in" operators
- Fix a regression which would not allow the usage of non serializable stores even when using factories
- Fix a packaging issue where typing_extensions was not properly specified as a requirement for python versions below 3.8
- Add :func:`~kartothek.io.dask.dataframe.store_dataset_from_ddf` to offer write support of a dask dataframe without update support. This forbids or explicitly allows overwrites and does not update existing datasets.
- The
sort_partitions_by
feature now supports multiple columns. While this has only marginal effect for predicate pushdown, it may be used to improve the parquet compression. build_cube_from_dataframe
now supports theshuffle
methods offered by :func:`~kartothek.io.dask.dataframe.store_dataset_from_ddf` and :func:`~kartothek.io.dask.dataframe.update_dataset_from_ddf` but writes the output in the cube format
- Reduce memory consumption during index write.
- Allow simplekv stores and storefact URLs to be passed explicitly as input for the store arguments
- Add
hash_dataset
functionality
- Expand
pandas
version pin to include 1.1.X - Expand
pyarrow
version pin to include 1.x - Large addition to documentation for multi dataset handling (Kartothek Cubes)
- Fix evaluation of "OR"-connected predicates (#295)
- Update timestamp related code into Ktk Discover Cube functionality.
- Support backward compatibility to old cubes and fix for cli entry point.
- Introduction of
cube
Functionality which is made with multiple Kartothek datasets. - Basic Features - Extend, Query, Remove(Partitions), Delete (can delete entire datasets/cube), API, CLI, Core and IO features.
- Advanced Features - Multi-Dataset with Single Table, Explicit physical Partitions, Seed based join system.
- Add :meth:`~kartothek.io_components.metapartition.MetaPartition.get_parquet_metadata` and :func:`~kartothek.io.dask.dataframe.collect_dataset_metadata`, enabling users to collect information about the Parquet metadata of a dataset (#306)
- Performance of dataset update with
delete_scope
significantly improved for datasets with many partitions (#308)
- Dispatch performance improved for large datasets including metadata
- Introduction of
dispatch_metadata
kwarg to metapartitions read pipelines to allow for transition for future breaking release.
- Ensure that the empty (sentinel) DataFrame used in :func:`~kartothek.io.eager.read_table`
also has the correct behaviour when using the
categoricals
argument.
- The
dispatch_metapartitions
anddispatch_metapartitions_from_factory
will no longer attach index and metadata information to the created MP instances, unless explicitly requested.
- Arrow 0.17.X support
- Significant performance improvements for shuffle operations in :func:`~kartothek.io.dask.dataframe.update_dataset_from_ddf` for large dask.DataFrames with many payload columns by using in-memory compression during the shuffle operation.
- Allow calling :func:`~kartothek.io.dask.dataframe.update_dataset_from_ddf` without partition_on when shuffle=True.
- :func:`~kartothek.io.dask.dataframe.read_dataset_as_ddf` supports kwarg
dispatch_by
to control the internal partitioning structure when creating a dataframe. - :func:`~kartothek.io.dask.dataframe.read_dataset_as_ddf` and :func:`~kartothek.io.dask.dataframe.update_dataset_from_ddf`
now allow the keyword
table
to be optional, using the default SINGLE_TABLE identifier. (recommended since the multi table dataset support is in sunset).
- Read performance improved for, especially for partitioned datasets and queries with empty payload columns.
- GH262: Raise an exception when trying to partition on a column with null values to prevent silent data loss
- Fix multiple index creation issues (cutting data, crashing) for
uint
data - Fix index update issues for some types resulting in
TypeError: Trying to update an index with different types...
messages. - Fix issues where index creation with empty partitions can lead to
ValueError: Trying to create non-typesafe index
- Only fix column odering when restoring
DataFrame
if the ordering is incorrect.
- GH248 Fix an issue causing a ValueError to be raised when using dask_index_on on non-integer columns
- GH255 Fix an issue causing the python interpreter to shut down when reading an empty file (see also https://issues.apache.org/jira/browse/ARROW-8142)
- Add keyword argument dask_index_on which reconstructs a dask index from an kartothek index when loading the dataset
- Add method :func:`~kartothek.core.index.IndexBase.observed_values` which returns an array of all observed values of the index column
- Updated and improved documentation w.r.t. guides and API documentation
- GH227 Fix a Type error when loading categorical data in dask without specifying it explicitly
- No longer trigger the SettingWithCopyWarning when using bucketing
- GH228 Fix an issue where empty header creation from a pyarrow schema would not normalize the schema which causes schema violations during update.
- Fix an issue where :func:`~kartothek.io.eager.create_empty_dataset_header` would not accept a store factory.
- Support for pyarrow 0.16.0
- Decrease scheduling overhead for dask based pipelines
- Performance improvements for categorical data when using pyarrow>=0.15.0
- Dask is now able to calculate better size estimates for the following classes:
- :class:`~kartothek.core.dataset.DatasetMetadata`
- :class:`~kartothek.core.factory.DatasetFactory`
- :class:`~kartothek.io_components.metapartition.MetaPartition`
- :class:`~kartothek.core.index.ExplicitSecondaryIndex`
- :class:`~kartothek.core.index.PartitionIndex`
- :class:`~kartothek.core.partition.Partition`
- :class:`~kartothek.core.common_metadata.SchemaWrapper`
- Add more explicit typing to :mod:`kartothek.io.eager`.
- Fix an issue where :func:`~kartothek.io.dask.dataframe.update_dataset_from_ddf` would create a column named "_KTK_HASH_BUCKET" in the dataset
- Fix a regression introduced in 3.5.0 where predicates which allow multiple values for a field would generate duplicates
- The partition on shuffle algorithm in :func:`~kartothek.io.dask.dataframe.update_dataset_from_ddf` now supports producing deterministic buckets based on hashed input data.
- Fix addition of bogus index columns to Parquet files when using sort_partitions_by.
- Fix bug where
partition_on
in write path drops empty DataFrames and can lead to datasets without tables.
- Fix potential
pyarrow.lib.ArrowNotImplementedError
when trying to store or pickle empty :class:`~kartothek.core.index.ExplicitSecondaryIndex` objects - Fix pickling of :class:`~kartothek.core.index.ExplicitSecondaryIndex` unloaded in dispatch_metapartitions_from_factory
- Add support for pyarrow 0.15.0
- Additional functions in kartothek.serialization module for dealing with predicates * :func:`~kartothek.serialization.check_predicates` * :func:`~kartothek.serialization.filter_predicates_by_column` * :func:`~kartothek.serialization.columns_in_predicates`
- Added available types for type annotation when dealing with predicates * ~kartothek.serialization.PredicatesType * ~kartothek.serialization.ConjunctionType * ~kartothek.serialization.LiteralType
- Make
kartothek.io.*read_table*
methods use default table name if unspecified MetaPartition.parse_input_to_metapartition
accepts dicts and list of tuples equivalents asobj
input- Added secondary_indices as a default argument to the write pipelines
- Input to
normalize_args
is properly normalized tolist
MetaPartition.load_dataframes
now raises if table incolumns
argument doesn't exist- require
urlquote>=1.1.0
(whereurlquote.quoting
was introduced) - Improve performance for some cases where predicates are used with the in operator.
- Correctly preserve :class:`~kartothek.core.index.ExplicitSecondaryIndex` dtype when index is empty
- Fixed DeprecationWarning in pandas
CategoricalDtype
- Fixed broken docstring for store_dataframes_as_dataset
- Internal operations no longer perform schema validations. This will improve performance for batched partition operations (e.g. partition_on) but will defer the validation in case of inconsistencies to the final commit. Exception messages will be less verbose in these cases as before.
- Fix an issue where an empty dataframe of a partition in a multi-table dataset would raise a schema validation exception
- Fix an issue where the dispatch_by keyword would disable partition pruning
- Creating dataset with non existing columns as explicit index to raise a ValueError
- Remove support for pyarrow < 0.13.0
- Move the docs module from io_components to core
- Add support for pyarrow 0.14.1
- Use urlquote for faster quoting/unquoting
- Fix rejection of bool predicates in :func:`~kartothek.serialization.filter_array_like` when bool columns contains
None
- Streamline behavior of store_dataset_from_ddf when passing empty ddf.
- Fix an issue where a segmentation fault may be raised when comparing MetaPartition instances
- Expose a
date_as_object
flag inkartothek.core.index.as_flat_series
- Fix gh:66 where predicate pushdown may evalute false results if evaluated using improper types. The behavior now is to raise in these situations.
- Predicate pushdown and :func:`~kartothek.serialization.filter_array_like` will now properly handle pandas Categoricals.
- Add :meth:`~kartothek.io.dask.bag.read_dataset_as_dataframe_bag`
- Add kartothek.io.dask.bag.read_dataset_as_metapartitions_bag
- make :func:`~kartothek.io.dask.bag.build_dataset_indices__bag` more efficient
- make :func:`~kartothek.io.eager.build_dataset_indices` more efficient
- fix pseudo-private :meth:`~kartothek.io_components.read.dispatch_metapartitions` handling of
concat_partitions_on_primary_index
- fix internal errors if querying (e.g. via :meth:`~kartothek.io.eager.read_dataset_as_dataframes`) with
datetime.date
predicates that use the dataset index; this affects all code paths using :meth:`~kartothek.io_components.metapartition.MetaPartition.load_dataframes`
fix
getargspec
DeprecationWarning
fix
FutureWarning
infilter_array_like
remove
funcsigs
requirementImplement reference
io.eager
implementation, adding the functions:fix
_apply_partition_key_predicates
FutureWarning
serialize :class:`~kartothek.core.index.ExplicitSecondaryIndex` to parquet
improve messages for schema violation errors
Ensure binary column names are read as type
str
:- Ensure dataframe columns are of type
str
in :func:`~kartothek.core.common_metadata.empty_dataframe_from_schema` - Testing: create :func:`~kartothek.io.testing.read.test_binary_column_metadata` which checks column names stored as
bytes
objects are read as typestr
- Ensure dataframe columns are of type
fix issue where it was possible to add an index to an existing dataset by using update functions and partition indices (JDASoftwareGroup#16).
fix issue where unreferenced files were not being removed when deleting an entire dataset
support nested :class:`~kartothek.io_components.metapartition.MetaPartition` in :meth:`~kartothek.io_components.metapartition.MetaPartition.add_metapartition`. This fixes issue JDASoftwareGroup#40 .
Add :meth:`~kartothek.io.dask.bag.build_dataset_indices__bag`
Return dask.bag.Item object from :meth:`~kartothek.io.dask.bag.store_bag_as_dataset` to avoid misoptimization
Breaking:
- categorical normalization was moved from :meth:`~kartothek.core.common_metadata.make_meta` to :meth:`~kartothek.core.common_metadata.normalize_type`.
- :meth:`kartothek.core.common_metadata.SchemaWrapper.origin` is now a set of of strings instead of a single string
Partition.from_v2_dict
was removed, use :meth:`kartothek.core.partition.Partition.from_dict` instead
- Initial public release