-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathgenerator.py
379 lines (338 loc) · 10.8 KB
/
generator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
#!/usr/bin/env python3
from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter
from string import ascii_lowercase
import collections
def data_layer(name):
data_layer_str = '''name: "%s"
layer {
name: "data"
type: "Data"
top: "data"
top: "label"
include {
phase: TRAIN
}
transform_param {
mirror: true
crop_size: 224
mean_value: 104
mean_value: 117
mean_value: 123
}
data_param {
source: "../ilsvrc2012/ilsvrc2012_train"
batch_size: 32
backend: LMDB
}
}
layer {
name: "data"
type: "Data"
top: "data"
top: "label"
include {
phase: TEST
}
transform_param {
mirror: false
crop_size: 224
mean_value: 104
mean_value: 117
mean_value: 123
}
data_param {
source: "../ilsvrc2012/ilsvrc2012_val"
batch_size: 1
backend: LMDB
}
}
''' % name
return data_layer_str
def conv_layer(conv_params, name, bottom, top=None, filler="msra"):
if len(conv_params) == 3:
conv_params = conv_params + ((conv_params[0] - 1) // 2,)
kernel_size, num_output, stride, pad = conv_params
if top is None:
top = name
conv_layer_str = ('''layer {{
bottom: "{bottom}"
top: "{top}"
name: "{name}"
type: "Convolution"
convolution_param {{
num_output: {num_output}
kernel_size: {kernel_size}
pad: {pad}
stride: {stride}
weight_filler {{
type: "msra"
}}
'''\
+ ('''bias_term: false\n''' if USE_BN else
'''bias_filler {{
type: "constant"
value: 0
}}''') +'''
}}
}}
''').format(**locals())
return conv_layer_str
def bn_layer(name, bottom, top):
bn_layer_str = '''layer {{
bottom: "{top}"
top: "{top}"
name: "bn{name}"
type: "BatchNorm"
batch_norm_param {{
use_global_stats: false
}}
}}
layer {{
bottom: "{top}"
top: "{top}"
name: "scale{name}"
type: "Scale"
scale_param {{
bias_term: true
}}
}}
'''.format(**locals())
return bn_layer_str
def in_place_bn(name, activation):
return bn_layer(name, activation, activation)
def pooling_layer(kernel_size, stride, pool_type, layer_name, bottom, top=None):
if top is None:
top = layer_name
pool_layer_str = '''layer {
bottom: "%s"
top: "%s"
name: "%s"
type: "Pooling"
pooling_param {
kernel_size: %d
stride: %d
pool: %s
}
}
'''%(bottom, top, layer_name, kernel_size, stride, pool_type)
return pool_layer_str
def ave_pool(kernel_size, stride, layer_name, bottom):
return pooling_layer(kernel_size, stride, 'AVE', layer_name, bottom, layer_name)
def fc_layer(layer_name, bottom, top, num_output=1000):
fc_layer_str = '''layer {
bottom: "%s"
top: "%s"
name: "%s"
type: "InnerProduct"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 1
}
inner_product_param {
num_output: %d
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0
}
}
}
'''%(bottom, top, layer_name, num_output)
return fc_layer_str
def eltwise_layer(layer_name, bottom_1, bottom_2, top, op_type="SUM"):
eltwise_layer_str = '''layer {
bottom: "%s"
bottom: "%s"
top: "%s"
name: "%s"
type: "Eltwise"
eltwise_param {
operation: %s
}
}
'''%(bottom_1, bottom_2, top, layer_name, op_type)
return eltwise_layer_str
def activation_layer(layer_name, bottom, top, act_type="ReLU"):
act_layer_str = '''layer {
bottom: "%s"
top: "%s"
name: "%s"
type: "%s"
}
'''%(bottom, top, layer_name, act_type)
return act_layer_str
def in_place_relu(activation_name):
return activation_layer(activation_name + '_relu', activation_name, activation_name, act_type='ReLU')
def softmax_loss(bottom):
softmax_loss_str = '''layer {
bottom: "%s"
bottom: "label"
name: "loss"
type: "SoftmaxWithLoss"
top: "loss"
}
layer {
bottom: "%s"
bottom: "label"
top: "acc/top-1"
name: "acc/top-1"
type: "Accuracy"
include {
phase: TEST
}
}
layer {
bottom: "%s"
bottom: "label"
top: "acc/top-5"
name: "acc/top-5"
type: "Accuracy"
include {
phase: TEST
}
accuracy_param {
top_k: 5
}
}
'''%(bottom, bottom, bottom)
return softmax_loss_str
def conv1_layers():
layers = conv_layer((7, 64, 2), 'conv1', 'data')
if USE_BN:
layers += in_place_bn('_conv1', 'conv1')
layers += in_place_relu('conv1') \
+ pooling_layer(3, 2, 'MAX', 'pool1', 'conv1')
return layers
def normalized_conv_layers(conv_params, level, branch, prev_top, activation=True):
"""conv -> batch_norm -> ReLU"""
name = '%s_branch%s' % (level, branch)
activation_name = 'res' + name
layers = conv_layer(conv_params, activation_name, prev_top)
if USE_BN:
layers += in_place_bn(name, activation_name)
if activation:
layers += in_place_relu(activation_name)
return layers, activation_name
def bottleneck_layers(prev_top, level, num_output, shortcut_activation=None, shortcut_str='', shortcut_stride=1):
"""1x1 -> 3x3 -> 1x1"""
if shortcut_activation is None:
shortcut_activation = prev_top
all_layers = shortcut_str if USE_SHORTCUT else ''
layers, prev_top = normalized_conv_layers((1, num_output, shortcut_stride), level, '2a', prev_top)
all_layers += layers
layers, prev_top = normalized_conv_layers((3, num_output, 1), level, '2b', prev_top)
all_layers += layers
layers, prev_top = normalized_conv_layers((1, num_output*4, 1), level, '2c', prev_top, activation=(not USE_SHORTCUT))
all_layers += layers
if USE_SHORTCUT:
final_activation = 'res' + level
all_layers += eltwise_layer(final_activation, shortcut_activation, prev_top, final_activation) \
+ in_place_relu(final_activation)
return all_layers, prev_top if not USE_SHORTCUT else final_activation
def stacked_layers(prev_top, level, num_output, shortcut_activation=None, shortcut_str='', shortcut_stride=1):
"""3x3 -> 3x3"""
if shortcut_activation is None:
shortcut_activation = prev_top
all_layers = shortcut_str if USE_SHORTCUT else ''
layers, prev_top = normalized_conv_layers((3, num_output, shortcut_stride), level, '2a', prev_top)
all_layers += layers
layers, prev_top = normalized_conv_layers((3, num_output, 1), level, '2b', prev_top, activation=(not USE_SHORTCUT))
all_layers += layers
if USE_SHORTCUT:
final_activation = 'res' + level
all_layers += eltwise_layer(final_activation, shortcut_activation, prev_top, final_activation) \
+ in_place_relu(final_activation)
return all_layers, prev_top if not USE_SHORTCUT else final_activation
def bottleneck_layer_set(
prev_top, # Previous activation name
level, # Level number of this set, used for naming
num_output, # "num_output" param for most layers of this set
num_bottlenecks, # number of bottleneck sets
shortcut_params='default', # Conv params of the shortcut convolution
sublevel_naming='letters', # Naming scheme of layer sets. MSRA sometimes uses letters sometimes numbers
make_layers=bottleneck_layers, # Function to make layers with
):
"""A set of bottleneck layers, with the first one having an convolution shortcut to accomodate size"""
if shortcut_params == 'default':
shortcut_params = (1, num_output*(4 if make_layers is bottleneck_layers else 1), 2, 0)
shortcut_str, shortcut_activation = normalized_conv_layers(shortcut_params, '%da'%level, '1', prev_top, activation=False)
network_str = ''
if sublevel_naming == 'letters' and num_bottlenecks <= 26:
sublevel_names = ascii_lowercase[:num_bottlenecks]
else:
sublevel_names = ['a'] + ['b' + str(i) for i in range(1, num_bottlenecks)]
for index, sublevel in enumerate(sublevel_names):
if index != 0:
shortcut_activation, shortcut_str = None, ''
layers, prev_top = make_layers(prev_top, '%d%s'%(level, sublevel), num_output, shortcut_activation, shortcut_str)
else:
layers, prev_top = make_layers(prev_top, '%d%s'%(level, sublevel), num_output, shortcut_activation, shortcut_str, shortcut_params[2])
network_str += layers
return network_str, prev_top
def resnet(variant='50'): # Currently supports 50, 101, 152
Bottlenecks = collections.namedtuple('Bottlenecks', ['level', 'num_bottlenecks', 'sublevel_naming'])
Bottlenecks.__new__.__defaults__ = ('letters',)
StackedSets = type('StackedSets', (Bottlenecks,), {}) # Makes copy of Bottlenecks class
network_str = data_layer('ResNet-' + variant)
network_str += conv1_layers()
prev_top = 'pool1'
levels = {
'18': (
StackedSets(2, 2),
StackedSets(3, 2),
StackedSets(4, 2),
StackedSets(5, 2),
),
'34': (
StackedSets(2, 3),
StackedSets(3, 4),
StackedSets(4, 6),
StackedSets(5, 3),
),
'50': (
Bottlenecks(2, 3),
Bottlenecks(3, 4),
Bottlenecks(4, 6),
Bottlenecks(5, 3),
),
'101': (
Bottlenecks(2, 3),
Bottlenecks(3, 4, 'numbered'),
Bottlenecks(4, 23, 'numbered'),
Bottlenecks(5, 3),
),
'152': (
Bottlenecks(2, 3),
Bottlenecks(3, 8, 'numbered'),
Bottlenecks(4, 36, 'numbered'),
Bottlenecks(5, 3),
)
}
for layer_desc in levels[variant]:
level, num_bottlenecks, sublevel_naming = layer_desc
if level == 2:
shortcut_params = (1, (256 if type(layer_desc) is Bottlenecks else 64), 1, 0)
else:
shortcut_params = 'default'
layers, prev_top = bottleneck_layer_set(prev_top, level, 16*(2**level), num_bottlenecks,
shortcut_params=shortcut_params, sublevel_naming=sublevel_naming,
make_layers=(bottleneck_layers if type(layer_desc) is Bottlenecks else stacked_layers))
network_str += layers
network_str += ave_pool(7, 1, 'pool5', prev_top)
network_str += fc_layer('fc1000', 'pool5', 'fc1000', num_output=1000)
network_str += softmax_loss('fc1000')
return network_str
def main():
for net in ('18', '34', '50', '101', '152'):
with open('ResNet_{}_train_val.prototxt'.format(net), 'w') as fp:
fp.write(resnet(net))
USE_SHORTCUT = True
USE_BN = True
if __name__ == '__main__':
main()