generated from statOmics/Rmd-website
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathscRNA-seq-Tutorial.Rmd
51 lines (36 loc) · 1.55 KB
/
scRNA-seq-Tutorial.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
---
title: VI. Tutorial Single Cell Data Analysis
author: "Lieven Clement"
date: "[statOmics](https://statomics.github.io), Ghent University"
output:
html_document:
theme: flatly
code_download: false
toc: false
toc_float: false
number_sections: false
bibliography: msqrob2.bib
---
<a rel="license" href="https://creativecommons.org/licenses/by-nc-sa/4.0"><img alt="Creative Commons License" style="border-width:0" src="https://i.creativecommons.org/l/by-nc-sa/4.0/88x31.png" /></a>
### Macosko et al. dataset
Perform
- QC
- Feature selection
- Dimension reduction
- Clustering
on the Macosko dataset. A script with the steps can be found on
[Macosko](./singleCell_MacoskoWorkflow_blank.html).
The data can also be downloaded on the UFORA course website (content > scRNAseq Data).
### Differential expression analysis
Follow [chapter 4](http://bioconductor.org/books/3.16/OSCA.multisample/multi-sample-comparisons.html) of the OSCA book on multi-sample.
You can generate the input sce object using the [OSCA book chapter](http://bioconductor.org/books/3.16/OSCA.multisample/chimeric-mouse-embryo-10x-genomics.html#chimeric-mouse-embryo-10x-genomics) or you can download it from the UFORA course website (content > scRNAseq Data).
### Kang et al. dataset
1. Do the filtering and QC on the Kang dataset
2. Perform DE analysis for the stimulus effect in each cell type
Data can be loaded via
```
library(ExperimentHub)
eh <- ExperimentHub()
sce <- eh[["EH2259"]]
```
or on the UFORA course website (content > scRNAseq Data).