generated from statOmics/Rmd-website
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathTargetDecoy.Rmd
324 lines (244 loc) · 10.6 KB
/
TargetDecoy.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
---
title: "Introduction to TargetDecoy"
author:
- name: Lieven Clement
affiliation:
- Ghent University
output:
html_document:
code_download: true
theme: flatly
toc: true
toc_float: true
highlight: tango
number_sections: true
code_folding: "hide"
linkcolor: blue
urlcolor: blue
citecolor: blue
---
```{r setup, include=FALSE}
library(knitr)
opts_chunk$set(
collapse = TRUE,
comment = "#>",
crop = NULL,
fig.width = 6,
dpi = 72
)
```
```{r "libraries", message=FALSE, warning=FALSE}
library(TargetDecoy)
library(ggplot2)
```
# Introduction
![](figures/ProteomicsWorkflow.png)
![](figures/peptideSpectralMatching.png)
Slide courtesy to Lennart Martens
## Why did Lennart mention that "statistics were out of the window"
```{r}
library(TargetDecoy)
library(tidyverse)
data("ModSwissXT")
hlp <- TargetDecoy:::.getDF(ModSwissXT)
names(hlp) <- names(hlp) %>%
str_replace(pattern=":",replacement="_")
hlp <- hlp %>%
mutate(omssa_evalue=as.double(omssa_evalue))
```
- E-values: Probability that a random candidate peptide produces a higher score than the observed PSM score.
- Probability that a random candidate peptide produces a higher score that the observed PSM score for a real search with OMSSA.
```{r}
library(TargetDecoy)
library(tidyverse)
data("ModSwissXT")
hlp <- TargetDecoy:::.getDF(ModSwissXT)
names(hlp) <- names(hlp) %>%
str_replace(pattern=":",replacement="_")
hlp <- hlp %>%
mutate(omssa_evalue=as.double(omssa_evalue))
hlp %>%
filter(!is.na(omssa_evalue)) %>%
ggplot(aes(omssa_evalue)) +
geom_histogram(breaks=seq(0,100,5)) +
xlab("E-value (%)") +
ylab("frequency")
```
- E-value we expect for an observed spectrum and a random candidate peptide.
```{r}
data.frame(evalue=runif(20000,0,100)) %>%
ggplot(aes(evalue)) +
geom_histogram(breaks=seq(0,100,5)) +
xlab("E-value (%)") +
ylab("frequency")
```
- Probability that a random candidate peptide produces a higher score than the observed PSM score for decoys in a real search with OMSSA.
```{r}
hlp %>%
filter(isdecoy & !is.na(omssa_evalue)) %>%
ggplot(aes(omssa_evalue)) +
geom_histogram(breaks=seq(0,100,5)) +
xlab("E-value (%)") +
ylab("frequency")
```
- A bad hit is the random hit with the best score so it is also bound to have a low E-value.
- If we look at E-values for all PSMs they are only useful as a score.
- We should know the distribution of the maximum score of
random candidate peptides when we want to do the statistics.
```{r warning=FALSE}
hlp %>%
filter(!is.na(omssa_evalue)) %>%
ggplot(aes(-log10(omssa_evalue))) +
geom_histogram(breaks=seq(0,1000,.5)) +
xlab("-log10(E-value)") +
ylab("frequency") +
xlim(0,20)
```
# Concepts
## Basic Statistical Concepts
```{r}
names(hlp) <- names(hlp) %>% str_replace(pattern="-",replacement = "_")
hlp <- hlp %>% mutate(ms_gf_specevalue=as.double(ms_gf_specevalue))
```
```{r}
library(mgcv)
dec <- -log10(hlp$ms_gf_specevalue[hlp$isdecoy]) %>% na.exclude()
tar <- -log10(hlp$ms_gf_specevalue[!hlp$isdecoy]) %>% na.exclude()
breaks <- seq(0,30,.5)
#binWidth <-2
#breaks <- seq(floor(min(c(dec,tar))/binWidth)*binWidth,ceiling(max(c(dec,tar))/binWidth)*binWidth,binWidth)
#code if we register the modes by substracting the mode from the target scores and the decoy scores.
#breaks=seq(-(ceiling(abs(min(c(dec,tar))/binWidth))+.5)*binWidth,(ceiling(max(c(dec,tar))/binWidth)+.5)*binWidth,binWidth)
histDec <- hist(dec,breaks=breaks,plot = FALSE)
histTar <- hist(tar,breaks=breaks,plot=FALSE)
histSam <- hist(c(dec,tar),breaks=breaks, plot = FALSE)
grid<-seq(0,30,.1)
countsTarG<-data.frame(y=histTar$counts-histDec$counts,x=histTar$mids)
countsTarG$y[countsTarG$y<0]<-0
fitTarG<-gam(y~s(x),data=countsTarG,family=poisson)
fitTarGrid<-exp(predict(fitTarG,newdata=data.frame(x=grid)))
countsDec<-data.frame(y=histDec$counts,x=histDec$mids)
fitDec<-gam(y~s(x),data=countsDec,family=poisson)
fitSamBad<-exp(predict(fitDec,newdata=data.frame(x=grid)))*2
plot(histSam,xlab="MS-GF+ Score",ylab="# PSMs",main="Pyrococcus Search",border="white",col="grey",cex.axis=1.5,cex.main=1.5,cex.lab=1.5,ylim=c(0,1500), axes =FALSE)
axis(side=2,at=c(0,750,1500))
axis(side=1,at=c(0,10,20,30))
lines(grid,fitSamBad+fitTarGrid,col="black",lwd=2)
lines(grid,fitSamBad,col="#FF9900",lwd=2)
lines(grid,fitTarGrid,col="#009900",lwd=2)
```
Let $x$ be the PSM score
The scores will follow a mixture distribution:
$$f(x) = \pi_b \mathbin{\color{orange}{ f_b(x)}}+(1-\pi_b)\mathbin{\color{green}{ f_g(x)}},$$
The local fdr is also referred to as the posterior error probability (PEP), and is the probability that a PSM with a score $x$ is a bad hit.
$$
\begin{array}{lcl}
\text{lfdr}(x) &=&\text{PEP(x)}\\
&=& \text{P}[\text{bad hit} \vert X=x]\\
&=& \frac{\pi_b f_b(x)}{f(x)}
\end{array}
$$
We will return a list of PSMs by using the FDR:
$$FDR = E\left[\frac{FP}{TP + FP}\right]$$
- FP: number of false positives, bad hits
- TP: number of true positives, good hits
$$
\begin{array}{lcl}
\text{FDR}(x\geq t) &=&
\text{P}[\text{bad hit }\vert X \geq t]\\\\
&=&\frac{\pi_b\int\limits_{x=t}^{+\infty}f_b(x)}{\int\limits_{x=t}^{+\infty}f(x)}\\\\
&=&\frac{\pi_b[1-F_b(t)]}{1-F(t)}
\end{array}
$$
- So the FDR is a set property, it measure the probability on a bad hit in the set of PSMs with scores $X\geq t$.
Our list, thus consists of all PSMs with a score $x$ above a threshold t.
```{r warning=FALSE}
plot(histSam,xlab="MS-GF+ Score",ylab="# PSMs",main="Pyrococcus Search",border="white",col="grey",cex.axis=1.5,cex.main=1.5,cex.lab=1.5,ylim=c(0,1500), axes =FALSE)
axis(side=2,at=c(0,750,1500))
axis(side=1,at=c(0,10,20,30))
lines(grid,fitSamBad+fitTarGrid,col="black",lwd=2)
lines(grid,fitSamBad,col="#FF9900",lwd=2)
lines(grid,fitTarGrid,col="#009900",lwd=2)
text(pos=4,5,1430,label=expression(x >= t),col="darkorchid4",cex=2)
rect(5,-10,30,1500,lwd=2,border="darkorchid4")
```
- So we know how many PSMs we return, i.e. TP + FP:
$$\text{#PSMs with } x \geq t$$
and we can also estimate the probability on a PSM above the threshold empirically:
$$1-\hat{\text{F}}(t) = \frac{\text{#PSMs with } x \geq t}{\text{#PSMs}}$$
- So to estimate the FDR we only have to estimate the expected number of PSMs that are bad hits with a score $x$ above the threshold $t$.
$$\widehat{\text{FDR}}(t) = \frac{E\left[\#\text{Bad PSM hits with } X \geq t\right]}{\text{#PSMs with } x \geq t}$$
## Competitive target decoy approach
- Search against decoy database to generate representative bad hits
- Reverse database is popular
- Concatenated search is most popular
- Advantage, a number of bad hits already matches with decoys
$\rightarrow$ we know that these are bad hits
$\rightarrow$ we have to infer on less target PSMs.
```{r warning=FALSE}
hlp %>%
filter(!is.na(ms_gf_specevalue)) %>%
ggplot(aes(-log10(ms_gf_specevalue))) +
geom_histogram(breaks=seq(0,1000,.5)) +
xlab("-log10(E-value)") +
ylab("frequency") +
xlim(0,40) +
facet_grid(isdecoy~.)
```
We estimate that by using the decoys:
$$\text{# Decoys with x} \geq t$$
So our estimated FDR becomes
$$\widehat{\text{FDR}}(x\geq t) = \frac{\text{# Decoys} \geq t}{\text{# Targets} \geq t}$$
If we rewrite the FDR we can see the TDA assumptions:
$$
\begin{array}{lcl}
\widehat{\text{FDR}}(x\geq t)&=&\frac{\text{# Decoys} \geq t}{\text{# Targets} \geq t}\\\\
&=&\frac{\frac{\text{# Decoys}}{\text{# Targets}}\frac{\text{# Decoys with }x \geq t}{\text{# Decoys}}}{\frac{\text{# Targets with } x \geq t}{\text{# Targets}}}\\\\
&=&\frac{\frac{\hat{\text{E}}\left[\text{# Bad Targets}\right]}{\text{# Targets}}\frac{\hat{\text{E}}\left[\text{# Bad Targets with }X \geq t\right]}{\hat{\text{E}}\left[\text{# Bad targets}\right]}}{\frac{\text{# Targets with } x \geq t}{\text{# Targets}}} \\\\
&=&\frac{\hat{\text{P}}\left[\text{Bad Target} \right]\times\hat{\text{P}}\left[\text{Bad Target}\vert X \geq t \right]}{\hat{\text{P}}\left[\text{Target}\vert X \geq t\right]}\\\\
&=&\frac{\hat\pi_b [1-\hat{F}_b(t)]}{1-\hat{F}(t)}
\end{array}
$$
So the TDA has the following assumptions:
1. A bad hit is equally likely to match to a decoy as to a target sequence. $\rightarrow$ we can thus estimate the fraction of bad hits or the probability on a bad hit as $$\hat{\pi}_b = \frac{\# \text{Decoys}}{\# \text{Targets}}$$
2. Bad target PSM scores and decoy PSM scores are equaly distributed.
# Diagnostic plots for the TDA
We will evaluate the TDA assumptions using diagnostic plots that compares the empirical distribution of decoy and target PSM scores.
- Histograms
- P-P plots
With P-P plots will plot for each observed PSM score $t$ the empirical probability to observe a decoy with score $x \leq t$ to the empirical probability to observe a target with score $x \leq t$:
$$\hat{\text{P}}\left[\text{decoy with score } x \leq t\right] = \frac{\# \text{decoys with score } x \leq t}{\# \text{decoys}}$$
$$
\hat{\text{P}}\left[\text{target with score } x \leq t\right] = \frac{\# \text{target with score } x \leq t}{\# \text{targets}}
$$
If the two distributions are the same the dots of the P-P plot should follow the 1-1 line.
This will not be the case. We expect the distribution of the target PSMs:
- to be similarly distributed as the decoys for low scores
- and enriched with many high scores corresponding to target PSMs which are matching to the proper peptide sequence in the data base.
```{r}
hlp <- hlp %>%
mutate(score=-log10(hlp$ms_gf_specevalue))
y1<-hlp$score[hlp$isdecoy] %>% na.exclude
y2<-hlp$score[!hlp$isdecoy] %>% na.exclude
F1<-ecdf(y1)
F2<-ecdf(y2)
breaks<-seq(floor(min(c(y1,y2))),ceiling(max(c(y1,y2))),length.out=50)
pi0<-length(y1)/length(y2)
for (x in quantile(c(y1,y2),c(0,.01,.02,seq(0.1,1,.1))))
{
par(mfrow=c(1,2))
hist(y2,breaks=breaks,main="Pyrococcus MSGF+",cex.axis=1.5,cex.lab=1.5,cex.main=1.5,col="grey")
decHist<-hist(y1,breaks=breaks,plot=FALSE)
points(decHist$mids,decHist$counts,col="#FF9900",type="h",lwd=2)
abline(v=x,col="blue",lwd=2)
plot(F1(y2),F2(y2),xlab="ECDF Targets",ylab="ECDF Decoys",cex=.4,main="P-P plot",cex.axis=1.5,cex.lab=1.5,cex.main=1.5,col="grey",pch=19)
abline(a=0,b=pi0)
abline(v=F1(x),col="blue")
abline(h=F2(x),col="blue")
points(F1(x),F2(x),col="blue",cex=2,pch=19)
}
```
Note, that
- the points corresponding to low score values follow a straight line indicating that targets and decoys scores are similarly distributed
- this line has an angle equal to fraction of bad hits, which is estimated as $\hat\pi_b=\frac{\# \text{decoys}}{\#\text{targets}}$ and is indicated by the black line in the plot.
- This line can be used to assess the assumption that bad hits are equally likely matching to targets sequences as to decoy sequences.