-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathDay14.cpp
107 lines (94 loc) · 2.08 KB
/
Day14.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
/*
Author: Aryan Yadav
Implement Trie (Prefix Tree)
Complexity: O(n)
Algorithm: NA
Difficulty: Hard
Data Structure: Trie
*/
class TrieNode
{
public:
// Initialize your data structure here.
TrieNode()
{
count = 0;
for (int i = 0; i < 26; ++i)
{
next[i] = NULL;
}
}
int count;
TrieNode *next[26];
};
class Trie
{
public:
Trie()
{
root = new TrieNode();
}
~Trie()
{
this->deleteNodes(root);
}
// Inserts a word into the trie.
void insert(string key)
{
TrieNode *cur = this->root;
for (size_t i = 0; i < key.size(); ++i)
{
if (cur->next[key[i] - 'a'] == NULL)
{
cur->next[key[i] - 'a'] = new TrieNode();
}
cur = cur->next[key[i] - 'a'];
}
++cur->count;
}
// Returns if the word is in the trie.
bool search(string key)
{
return getTargetCount(key) > 0;
}
// Returns if there is any word in the trie
// that starts with the given prefix.
bool startsWith(string prefix)
{
return this->getTargetCount(prefix) != -1;
}
void deleteNodes(TrieNode *node)
{
if (node == NULL)
{
return;
}
for (size_t i = 0; i < 26; ++i)
{
this->deleteNodes(node->next[i]);
}
delete node;
}
private:
int getTargetCount(string key)
{
TrieNode *cur = this->root;
for (size_t i = 0; i < key.size(); ++i)
{
if (cur->next[key[i] - 'a'] == NULL)
{
return -1;
}
cur = cur->next[key[i] - 'a'];
}
return cur->count;
}
TrieNode *root;
};
/**
* Your Trie object will be instantiated and called as such:
* Trie* obj = new Trie();
* obj->insert(word);
* bool param_2 = obj->search(word);
* bool param_3 = obj->startsWith(prefix);
*/