-
Notifications
You must be signed in to change notification settings - Fork 69
/
Copy pathutil.py
101 lines (79 loc) · 3.12 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
# Copyright 2016 Stanford University
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import nlc_data
import numpy as np
from six.moves import xrange
import tensorflow as tf
import random
FLAGS = tf.app.flags.FLAGS
def tokenize(string):
return [int(s) for s in string.split()]
def pair_iter(fnamex, fnamey, batch_size, num_layers, sort_and_shuffle=True):
fdx, fdy = open(fnamex), open(fnamey)
batches = []
while True:
if len(batches) == 0:
refill(batches, fdx, fdy, batch_size, sort_and_shuffle=sort_and_shuffle)
if len(batches) == 0:
break
x_tokens, y_tokens = batches.pop(0)
y_tokens = add_sos_eos(y_tokens)
x_padded, y_padded = padded(x_tokens, num_layers), padded(y_tokens, 1)
source_tokens = np.array(x_padded).T
source_mask = (source_tokens != nlc_data.PAD_ID).astype(np.int32)
target_tokens = np.array(y_padded).T
target_mask = (target_tokens != nlc_data.PAD_ID).astype(np.int32)
yield (source_tokens, source_mask, target_tokens, target_mask)
return
def refill(batches, fdx, fdy, batch_size, sort_and_shuffle=True):
line_pairs = []
linex, liney = fdx.readline(), fdy.readline()
while linex and liney:
x_tokens, y_tokens = tokenize(linex), tokenize(liney)
if len(x_tokens) < FLAGS.max_seq_len and len(y_tokens) < FLAGS.max_seq_len:
line_pairs.append((x_tokens, y_tokens))
if len(line_pairs) == batch_size * 16:
break
linex, liney = fdx.readline(), fdy.readline()
if sort_and_shuffle:
line_pairs = sorted(line_pairs, key=lambda e: len(e[0]))
for batch_start in xrange(0, len(line_pairs), batch_size):
x_batch, y_batch = zip(*line_pairs[batch_start:batch_start+batch_size])
# if len(x_batch) < batch_size:
# break
batches.append((x_batch, y_batch))
if sort_and_shuffle:
random.shuffle(batches)
return
def add_sos_eos(tokens):
return map(lambda token_list: [nlc_data.SOS_ID] + token_list + [nlc_data.EOS_ID], tokens)
def padded(tokens, depth):
maxlen = max(map(lambda x: len(x), tokens))
align = pow(2, depth - 1)
padlen = maxlen + (align - maxlen) % align
return map(lambda token_list: token_list + [nlc_data.PAD_ID] * (padlen - len(token_list)), tokens)
def get_tokenizer(flags):
if flags.tokenizer.lower() == 'bpe':
return nlc_data.bpe_tokenizer
elif flags.tokenizer.lower() == 'char':
return nlc_data.char_tokenizer
elif flags.tokenizer.lower() == 'word':
return nlc_data.basic_tokenizer
else:
raise
return tokenizer