-
Notifications
You must be signed in to change notification settings - Fork 24
/
prometeo_variables.cc
183 lines (156 loc) · 8.38 KB
/
prometeo_variables.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
// Copyright (c) "2019, by Stanford University
// Developer: Mario Di Renzo
// Affiliation: Center for Turbulence Research, Stanford University
// URL: https://ctr.stanford.edu
// Citation: Di Renzo, M., Lin, F., and Urzay, J. (2020).
// HTR solver: An open-source exascale-oriented task-based
// multi-GPU high-order code for hypersonic aerothermodynamics.
// Computer Physics Communications 255, 107262"
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER BE LIABLE FOR ANY
// DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
// LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
// ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "prometeo_variables.hpp"
// UpdatePropertiesFromPrimitiveTask
/*static*/ const char * const UpdatePropertiesFromPrimitiveTask::TASK_NAME = "UpdatePropertiesFromPrimitive";
/*static*/ const int UpdatePropertiesFromPrimitiveTask::TASK_ID = TID_UpdatePropertiesFromPrimitive;
void UpdatePropertiesFromPrimitiveTask::cpu_base_impl(
const Args &args,
const std::vector<PhysicalRegion> ®ions,
const std::vector<Future> &futures,
Context ctx, Runtime *runtime)
{
assert(regions.size() == 2);
assert(futures.size() == 0);
// Accessors for primitive variables
const AccessorRO<double, 3> acc_pressure (regions[0], FID_pressure);
const AccessorRO<double, 3> acc_temperature (regions[0], FID_temperature);
const AccessorRO<VecNSp, 3> acc_MolarFracs (regions[0], FID_MolarFracs);
const AccessorRO< Vec3, 3> acc_velocity (regions[0], FID_velocity);
const AccessorWO<VecNSp, 3> acc_MassFracs (regions[1], FID_MassFracs);
// Accessors for properties
const AccessorWO<double, 3> acc_rho (regions[1], FID_rho);
const AccessorWO<double, 3> acc_mu (regions[1], FID_mu);
const AccessorWO<double, 3> acc_lam (regions[1], FID_lam);
const AccessorWO<VecNSp, 3> acc_Di (regions[1], FID_Di);
const AccessorWO<double, 3> acc_SoS (regions[1], FID_SoS);
#if (defined(ELECTRIC_FIELD) && (nIons > 0))
const AccessorWO<VecNIo, 3> acc_Ki (regions[1], FID_Ki);
#endif
// Extract execution domain
Rect<3> r_Fluid = runtime->get_index_space_domain(ctx, regions[1].get_logical_region().get_index_space());
// Here we are assuming C layout of the instance
#ifdef REALM_USE_OPENMP
#pragma omp parallel for collapse(3)
#endif
for (int k = r_Fluid.lo.z; k <= r_Fluid.hi.z; k++)
for (int j = r_Fluid.lo.y; j <= r_Fluid.hi.y; j++)
for (int i = r_Fluid.lo.x; i <= r_Fluid.hi.x; i++) {
const Point<3> p = Point<3>{i,j,k};
// Mixture check
assert(args.mix.CheckMixture(acc_MolarFracs[p]));
UpdateProperties(acc_pressure, acc_temperature,
acc_MolarFracs, acc_velocity,
acc_MassFracs,
acc_rho, acc_mu, acc_lam,
acc_Di, acc_SoS,
#if (defined(ELECTRIC_FIELD) && (nIons > 0))
acc_Ki,
#endif
p, args.mix);
}
}
// UpdateConservedFromPrimitiveTask
/*static*/ const char * const UpdateConservedFromPrimitiveTask::TASK_NAME = "UpdateConservedFromPrimitive";
/*static*/ const int UpdateConservedFromPrimitiveTask::TASK_ID = TID_UpdateConservedFromPrimitive;
void UpdateConservedFromPrimitiveTask::cpu_base_impl(
const Args &args,
const std::vector<PhysicalRegion> ®ions,
const std::vector<Future> &futures,
Context ctx, Runtime *runtime)
{
assert(regions.size() == 2);
assert(futures.size() == 0);
// Accessors for primitive variables
const AccessorRO<VecNSp, 3> acc_MassFracs (regions[0], FID_MassFracs);
const AccessorRO<double, 3> acc_temperature (regions[0], FID_temperature);
const AccessorRO< Vec3, 3> acc_velocity (regions[0], FID_velocity);
// Accessors for properties
const AccessorRO<double, 3> acc_rho (regions[0], FID_rho);
// Accessors for conserved variables
const AccessorWO<VecNEq, 3> acc_Conserved (regions[1], FID_Conserved);
// Extract execution domain
Domain r_Fluid = runtime->get_index_space_domain(ctx, regions[1].get_logical_region().get_index_space());
// Launch domain might be composed by multiple rectangles
for (RectInDomainIterator<3> Rit(r_Fluid); Rit(); Rit++) {
// Here we are assuming C layout of the instance
#ifdef REALM_USE_OPENMP
#pragma omp parallel for collapse(3)
#endif
for (int k = (*Rit).lo.z; k <= (*Rit).hi.z; k++)
for (int j = (*Rit).lo.y; j <= (*Rit).hi.y; j++)
for (int i = (*Rit).lo.x; i <= (*Rit).hi.x; i++) {
const Point<3> p = Point<3>{i,j,k};
// Mixture check
assert(args.mix.CheckMixture(acc_MassFracs[p]));
UpdateConserved(acc_MassFracs, acc_temperature, acc_velocity,
acc_rho, acc_Conserved,
p, args.mix);
}
}
}
// UpdatePrimitiveFromConservedTask
/*static*/ const char * const UpdatePrimitiveFromConservedTask::TASK_NAME = "UpdatePrimitiveFromConserved";
/*static*/ const int UpdatePrimitiveFromConservedTask::TASK_ID = TID_UpdatePrimitiveFromConserved;
void UpdatePrimitiveFromConservedTask::cpu_base_impl(
const Args &args,
const std::vector<PhysicalRegion> ®ions,
const std::vector<Future> &futures,
Context ctx, Runtime *runtime)
{
assert(regions.size() == 2);
assert(futures.size() == 0);
// Accessors for conserved variables
const AccessorRO<VecNEq, 3> acc_Conserved (regions[0], FID_Conserved);
// Accessors for temperature variables
const AccessorRW<double, 3> acc_temperature (regions[1], FID_temperature);
// Accessors for primitive variables
const AccessorWO<double, 3> acc_pressure (regions[1], FID_pressure);
const AccessorWO<VecNSp, 3> acc_MolarFracs (regions[1], FID_MolarFracs);
const AccessorWO< Vec3, 3> acc_velocity (regions[1], FID_velocity);
// Extract execution domain
Rect<3> r_Fluid = runtime->get_index_space_domain(ctx, regions[1].get_logical_region().get_index_space());
// Here we are assuming C layout of the instance
#ifdef REALM_USE_OPENMP
#pragma omp parallel for collapse(3)
#endif
for (int k = r_Fluid.lo.z; k <= r_Fluid.hi.z; k++)
for (int j = r_Fluid.lo.y; j <= r_Fluid.hi.y; j++)
for (int i = r_Fluid.lo.x; i <= r_Fluid.hi.x; i++) {
const Point<3> p = Point<3>{i,j,k};
UpdatePrimitive(acc_Conserved, acc_temperature, acc_pressure,
acc_MolarFracs, acc_velocity,
p, args.mix);
}
}
void register_variables_tasks() {
TaskHelper::register_hybrid_variants<UpdatePropertiesFromPrimitiveTask>();
TaskHelper::register_hybrid_variants<UpdateConservedFromPrimitiveTask>();
TaskHelper::register_hybrid_variants<UpdatePrimitiveFromConservedTask>();
};