-
Notifications
You must be signed in to change notification settings - Fork 24
/
prometeo_sensor.cu
220 lines (193 loc) · 10.8 KB
/
prometeo_sensor.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
// Copyright (c) "2019, by Stanford University
// Developer: Mario Di Renzo
// Affiliation: Center for Turbulence Research, Stanford University
// URL: https://ctr.stanford.edu
// Citation: Di Renzo, M., Lin, F., and Urzay, J. (2020).
// HTR solver: An open-source exascale-oriented task-based
// multi-GPU high-order code for hypersonic aerothermodynamics.
// Computer Physics Communications 255, 107262"
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER BE LIABLE FOR ANY
// DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
// LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
// ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "prometeo_sensor.hpp"
#include "prometeo_sensor.inl"
#include "cuda_utils.hpp"
//-----------------------------------------------------------------------------
// KERNEL FOR UpdateDucrosSensorTask
//-----------------------------------------------------------------------------
__global__
void ComputeDucrosSensor_kernel(const AccessorWO<double, 3> DucrosSensor,
const AccessorRO< Vec3, 3> velocity,
const AccessorRO< int, 3> nType_csi,
const AccessorRO< int, 3> nType_eta,
const AccessorRO< int, 3> nType_zet,
const AccessorRO<double, 3> dcsi_d,
const AccessorRO<double, 3> deta_d,
const AccessorRO<double, 3> dzet_d,
const Rect<3> my_bounds,
const Rect<3> Fluid_bounds,
const double eps,
const coord_t size_x,
const coord_t size_y,
const coord_t size_z)
{
int x = blockIdx.x * blockDim.x + threadIdx.x;
int y = blockIdx.y * blockDim.y + threadIdx.y;
int z = blockIdx.z * blockDim.z + threadIdx.z;
if ((x < size_x) && (y < size_y) && (z < size_z)) {
const Point<3> p = Point<3>(x + my_bounds.lo.x,
y + my_bounds.lo.y,
z + my_bounds.lo.z);
DucrosSensor[p] = UpdateDucrosSensorTask::DucrosSensor(velocity,
nType_csi, nType_eta, nType_zet,
dcsi_d, deta_d, dzet_d,
p, Fluid_bounds, eps);
}
}
__host__
void UpdateDucrosSensorTask::gpu_base_impl(
const Args &args,
const std::vector<PhysicalRegion> ®ions,
const std::vector<Future> &futures,
Context ctx, Runtime *runtime)
{
assert(regions.size() == 3);
assert(futures.size() == 0);
// Accessors for variables in the Ghost regions
const AccessorRO< Vec3, 3> acc_velocity (regions[0], FID_velocity);
// Accessors for metrics
const AccessorRO< int, 3> acc_nType_x (regions[1], FID_nType_x);
const AccessorRO< int, 3> acc_nType_y (regions[1], FID_nType_y);
const AccessorRO< int, 3> acc_nType_z (regions[1], FID_nType_z);
const AccessorRO<double, 3> acc_dcsi_d (regions[1], FID_dcsi_d);
const AccessorRO<double, 3> acc_deta_d (regions[1], FID_deta_d);
const AccessorRO<double, 3> acc_dzet_d (regions[1], FID_dzet_d);
// Accessors for shock sensor
const AccessorWO<double, 3> acc_DucrosSensor (regions[2], FID_DucrosSensor);
// Extract execution domains
Rect<3> r_MyFluid = runtime->get_index_space_domain(ctx, regions[1].get_logical_region().get_index_space());
Rect<3> Fluid_bounds = args.Fluid_bounds;
// Compute vorticity scale
const double eps = max(args.vorticityScale*args.vorticityScale, 1e-6);
// Launch the kernel to update the Ducros sensor
const int threads_per_block = 256;
const dim3 TPB_3d = splitThreadsPerBlock<Xdir>(threads_per_block, r_MyFluid);
const dim3 num_blocks_3d = dim3((getSize<Xdir>(r_MyFluid) + (TPB_3d.x - 1)) / TPB_3d.x,
(getSize<Ydir>(r_MyFluid) + (TPB_3d.y - 1)) / TPB_3d.y,
(getSize<Zdir>(r_MyFluid) + (TPB_3d.z - 1)) / TPB_3d.z);
ComputeDucrosSensor_kernel<<<num_blocks_3d, TPB_3d>>>(
acc_DucrosSensor, acc_velocity,
acc_nType_x, acc_nType_y, acc_nType_z,
acc_dcsi_d, acc_deta_d, acc_dzet_d,
r_MyFluid, Fluid_bounds, eps,
getSize<Xdir>(r_MyFluid), getSize<Ydir>(r_MyFluid), getSize<Zdir>(r_MyFluid));
}
//-----------------------------------------------------------------------------
// KERNEL FOR UpdateShockSensorTask
//-----------------------------------------------------------------------------
template<direction dir>
__global__
void UpdateShockSensor_kernel(const AccessorRO<double, 3> DucrosSensor,
const AccessorRO<VecNEq, 3> Conserved,
const AccessorRO< int, 3> nType,
const AccessorWO< bool, 3> shockSensor,
const Rect<3> my_bounds,
const Rect<3> Fluid_bounds,
const coord_t size_x,
const coord_t size_y,
const coord_t size_z,
const coord_t size)
{
int x = blockIdx.x * blockDim.x + threadIdx.x;
int y = blockIdx.y * blockDim.y + threadIdx.y;
int z = blockIdx.z * blockDim.z + threadIdx.z;
if ((x < size_x) && (y < size_y) && (z < size_z)) {
const Point<3> p = Point<3>(x + my_bounds.lo.x,
y + my_bounds.lo.y,
z + my_bounds.lo.z);
const Point<3> pM2 = warpPeriodic<dir, Minus>(Fluid_bounds, p, size, offM2(nType[p]));
const Point<3> pM1 = warpPeriodic<dir, Minus>(Fluid_bounds, p, size, offM1(nType[p]));
const Point<3> pP1 = warpPeriodic<dir, Plus >(Fluid_bounds, p, size, offP1(nType[p]));
const Point<3> pP2 = warpPeriodic<dir, Plus >(Fluid_bounds, p, size, offP2(nType[p]));
const Point<3> pP3 = warpPeriodic<dir, Plus >(Fluid_bounds, p, size, offP3(nType[p]));
const double Phi = max(max(max(max(max(
DucrosSensor[pM2],
DucrosSensor[pM1]),
DucrosSensor[p ]),
DucrosSensor[pP1]),
DucrosSensor[pP2]),
DucrosSensor[pP3]);
bool sensor = true;
#pragma unroll
for (int i=0; i<nSpec; i++)
sensor = sensor && TENOsensor::TENOA(Conserved[pM2][i], Conserved[pM1][i], Conserved[p ][i],
Conserved[pP1][i], Conserved[pP2][i], Conserved[pP3][i],
nType[p], Phi);
shockSensor[p] = sensor;
}
}
template<direction dir>
__host__
void UpdateShockSensorTask<dir>::gpu_base_impl(
const Args &args,
const std::vector<PhysicalRegion> ®ions,
const std::vector<Future> &futures,
Context ctx, Runtime *runtime)
{
assert(regions.size() == 3);
assert(futures.size() == 0);
// Accessors for variables in the Ghost regions
const AccessorRO<VecNEq, 3> acc_Conserved (regions[0], FID_Conserved);
const AccessorRO<double, 3> acc_DucrosSensor (regions[0], FID_DucrosSensor);
// Accessors for node type
const AccessorRO< int, 3> acc_nType (regions[1], FID_nType);
// Accessors for shock sensor
const AccessorWO< bool, 3> acc_shockSensor (regions[2], FID_shockSensor);
// Extract execution domains
Rect<3> r_MyFluid = runtime->get_index_space_domain(ctx, regions[2].get_logical_region().get_index_space());
Rect<3> Fluid_bounds = args.Fluid_bounds;
const coord_t size = getSize<dir>(Fluid_bounds);
// Launch the kernel to update the shock sensor
const int threads_per_block = 256;
const dim3 TPB_3d = splitThreadsPerBlock<dir>(threads_per_block, r_MyFluid);
const dim3 num_blocks_3d = dim3((getSize<Xdir>(r_MyFluid) + (TPB_3d.x - 1)) / TPB_3d.x,
(getSize<Ydir>(r_MyFluid) + (TPB_3d.y - 1)) / TPB_3d.y,
(getSize<Zdir>(r_MyFluid) + (TPB_3d.z - 1)) / TPB_3d.z);
UpdateShockSensor_kernel<dir><<<num_blocks_3d, TPB_3d>>>(
acc_DucrosSensor, acc_Conserved,
acc_nType, acc_shockSensor,
r_MyFluid, Fluid_bounds,
getSize<Xdir>(r_MyFluid), getSize<Ydir>(r_MyFluid), getSize<Zdir>(r_MyFluid), size);
}
template void UpdateShockSensorTask<Xdir>::gpu_base_impl(
const Args &args,
const std::vector<PhysicalRegion> ®ions,
const std::vector<Future> &futures,
Context ctx, Runtime *runtime);
template void UpdateShockSensorTask<Ydir>::gpu_base_impl(
const Args &args,
const std::vector<PhysicalRegion> ®ions,
const std::vector<Future> &futures,
Context ctx, Runtime *runtime);
template void UpdateShockSensorTask<Zdir>::gpu_base_impl(
const Args &args,
const std::vector<PhysicalRegion> ®ions,
const std::vector<Future> &futures,
Context ctx, Runtime *runtime);