-
Notifications
You must be signed in to change notification settings - Fork 24
/
prometeo_sensor.cc
177 lines (152 loc) · 8.51 KB
/
prometeo_sensor.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
// Copyright (c) "2019, by Stanford University
// Developer: Mario Di Renzo
// Affiliation: Center for Turbulence Research, Stanford University
// URL: https://ctr.stanford.edu
// Citation: Di Renzo, M., Lin, F., and Urzay, J. (2020).
// HTR solver: An open-source exascale-oriented task-based
// multi-GPU high-order code for hypersonic aerothermodynamics.
// Computer Physics Communications 255, 107262"
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER BE LIABLE FOR ANY
// DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
// LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
// ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "prometeo_sensor.hpp"
#include "prometeo_sensor.inl"
// UpdateDucrosSensorTask
/*static*/ const char * const UpdateDucrosSensorTask::TASK_NAME = "UpdateDucrosSensor";
/*static*/ const int UpdateDucrosSensorTask::TASK_ID = TID_UpdateDucrosSensor;
void UpdateDucrosSensorTask::cpu_base_impl(
const Args &args,
const std::vector<PhysicalRegion> ®ions,
const std::vector<Future> &futures,
Context ctx, Runtime *runtime)
{
assert(regions.size() == 3);
assert(futures.size() == 0);
// Accessors for variables in the Ghost regions
const AccessorRO< Vec3, 3> acc_velocity (regions[0], FID_velocity);
// Accessors for metrics
const AccessorRO< int, 3> acc_nType_x (regions[1], FID_nType_x);
const AccessorRO< int, 3> acc_nType_y (regions[1], FID_nType_y);
const AccessorRO< int, 3> acc_nType_z (regions[1], FID_nType_z);
const AccessorRO<double, 3> acc_dcsi_d (regions[1], FID_dcsi_d);
const AccessorRO<double, 3> acc_deta_d (regions[1], FID_deta_d);
const AccessorRO<double, 3> acc_dzet_d (regions[1], FID_dzet_d);
// Accessors for shock sensor
const AccessorWO<double, 3> acc_DucrosSensor (regions[2], FID_DucrosSensor);
// Extract execution domains
Rect<3> r_MyFluid = runtime->get_index_space_domain(ctx, regions[1].get_logical_region().get_index_space());
Rect<3> Fluid_bounds = args.Fluid_bounds;
// Compute vorticity scale
const double eps = std::max(args.vorticityScale*args.vorticityScale, 1e-6);
// Here we are assuming C layout of the instance
#ifdef REALM_USE_OPENMP
#pragma omp parallel for collapse(3)
#endif
for (int k = r_MyFluid.lo.z; k <= r_MyFluid.hi.z; k++)
for (int j = r_MyFluid.lo.y; j <= r_MyFluid.hi.y; j++)
for (int i = r_MyFluid.lo.x; i <= r_MyFluid.hi.x; i++) {
const Point<3> p = Point<3>{i,j,k};
acc_DucrosSensor[p] = DucrosSensor(acc_velocity,
acc_nType_x, acc_nType_y, acc_nType_z,
acc_dcsi_d, acc_deta_d, acc_dzet_d,
p, Fluid_bounds, eps);
}
}
template<direction dir>
void UpdateShockSensorTask<dir>::cpu_base_impl(
const Args &args,
const std::vector<PhysicalRegion> ®ions,
const std::vector<Future> &futures,
Context ctx, Runtime *runtime)
{
assert(regions.size() == 3);
assert(futures.size() == 0);
// Accessors for variables in the Ghost regions
const AccessorRO<VecNEq, 3> acc_Conserved (regions[0], FID_Conserved);
const AccessorRO<double, 3> acc_DucrosSensor (regions[0], FID_DucrosSensor);
// Accessors for node type
const AccessorRO< int, 3> acc_nType (regions[1], FID_nType);
// Accessors for shock sensor
const AccessorWO< bool, 3> acc_shockSensor (regions[2], FID_shockSensor);
// Extract execution domains
Rect<3> r_MyFluid = runtime->get_index_space_domain(ctx, regions[2].get_logical_region().get_index_space());
Rect<3> Fluid_bounds = args.Fluid_bounds;
const coord_t size = getSize<dir>(Fluid_bounds);
// Here we are assuming C layout of the instance
#ifdef REALM_USE_OPENMP
#pragma omp parallel for collapse(3)
#endif
for (int k = r_MyFluid.lo.z; k <= r_MyFluid.hi.z; k++)
for (int j = r_MyFluid.lo.y; j <= r_MyFluid.hi.y; j++)
for (int i = r_MyFluid.lo.x; i <= r_MyFluid.hi.x; i++) {
const Point<3> p = Point<3>{i,j,k};
const Point<3> pM2 = warpPeriodic<dir, Minus>(Fluid_bounds, p, size, offM2(acc_nType[p]));
const Point<3> pM1 = warpPeriodic<dir, Minus>(Fluid_bounds, p, size, offM1(acc_nType[p]));
const Point<3> pP1 = warpPeriodic<dir, Plus >(Fluid_bounds, p, size, offP1(acc_nType[p]));
const Point<3> pP2 = warpPeriodic<dir, Plus >(Fluid_bounds, p, size, offP2(acc_nType[p]));
const Point<3> pP3 = warpPeriodic<dir, Plus >(Fluid_bounds, p, size, offP3(acc_nType[p]));
const double Phi = std::max(std::max(std::max(std::max(std::max(
acc_DucrosSensor[pM2],
acc_DucrosSensor[pM1]),
acc_DucrosSensor[p ]),
acc_DucrosSensor[pP1]),
acc_DucrosSensor[pP2]),
acc_DucrosSensor[pP3]);
bool sensor = true;
for (int h=0; h<nSpec; h++)
sensor = sensor && TENOsensor::TENOA(acc_Conserved[pM2][h], acc_Conserved[pM1][h], acc_Conserved[p ][h],
acc_Conserved[pP1][h], acc_Conserved[pP2][h], acc_Conserved[pP3][h],
acc_nType[p], Phi);
acc_shockSensor[p] = sensor;
}
}
// Specielize UpdateShockSensorTask for the X direction
template<>
/*static*/ const char * const UpdateShockSensorTask<Xdir>::TASK_NAME = "UpdateShockSensorX";
template<>
/*static*/ const int UpdateShockSensorTask<Xdir>::TASK_ID = TID_UpdateShockSensorX;
template<>
/*static*/ const FieldID UpdateShockSensorTask<Xdir>::FID_nType = FID_nType_x;
template<>
/*static*/ const FieldID UpdateShockSensorTask<Xdir>::FID_shockSensor = FID_shockSensorX;
// Specielize UpdateShockSensorTask for the Y direction
template<>
/*static*/ const char * const UpdateShockSensorTask<Ydir>::TASK_NAME = "UpdateShockSensorY";
template<>
/*static*/ const int UpdateShockSensorTask<Ydir>::TASK_ID = TID_UpdateShockSensorY;
template<>
/*static*/ const FieldID UpdateShockSensorTask<Ydir>::FID_nType = FID_nType_y;
template<>
/*static*/ const FieldID UpdateShockSensorTask<Ydir>::FID_shockSensor = FID_shockSensorY;
// Specielize UpdateShockSensorTask for the Z direction
template<>
/*static*/ const char * const UpdateShockSensorTask<Zdir>::TASK_NAME = "UpdateShockSensorZ";
template<>
/*static*/ const int UpdateShockSensorTask<Zdir>::TASK_ID = TID_UpdateShockSensorZ;
template<>
/*static*/ const FieldID UpdateShockSensorTask<Zdir>::FID_nType = FID_nType_z;
template<>
/*static*/ const FieldID UpdateShockSensorTask<Zdir>::FID_shockSensor = FID_shockSensorZ;
void register_sensor_tasks() {
TaskHelper::register_hybrid_variants<UpdateDucrosSensorTask>();
TaskHelper::register_hybrid_variants<UpdateShockSensorTask<Xdir>>();
TaskHelper::register_hybrid_variants<UpdateShockSensorTask<Ydir>>();
TaskHelper::register_hybrid_variants<UpdateShockSensorTask<Zdir>>();
};