-
Notifications
You must be signed in to change notification settings - Fork 24
/
prometeo_metric.cc
253 lines (213 loc) · 11.3 KB
/
prometeo_metric.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
// Copyright (c) "2019, by Stanford University
// Developer: Mario Di Renzo
// Affiliation: Center for Turbulence Research, Stanford University
// URL: https://ctr.stanford.edu
// Citation: Di Renzo, M., Lin, F., and Urzay, J. (2020).
// HTR solver: An open-source exascale-oriented task-based
// multi-GPU high-order code for hypersonic aerothermodynamics.
// Computer Physics Communications 255, 107262"
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER BE LIABLE FOR ANY
// DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
// LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
// ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "prometeo_metric.hpp"
// InitializeMetricTask
/*static*/ const char * const InitializeMetricTask::TASK_NAME = "InitializeMetric";
/*static*/ const int InitializeMetricTask::TASK_ID = TID_InitializeMetric;
void InitializeMetricTask::cpu_base_impl(
const Args &args,
const std::vector<PhysicalRegion> ®ions,
const std::vector<Future> &futures,
Context ctx, Runtime *runtime)
{
assert(regions.size() == 2);
assert(futures.size() == 0);
// Accessors for variables in the Ghost regions
const AccessorRO< Vec3, 3> acc_centerCoordinates(regions[0], FID_centerCoordinates);
const AccessorRO< int, 3> acc_nType_x (regions[0], FID_nType_x);
const AccessorRO< int, 3> acc_nType_y (regions[0], FID_nType_y);
const AccessorRO< int, 3> acc_nType_z (regions[0], FID_nType_z);
// Accessors for metrics
const AccessorWO<double, 3> acc_dcsi_e(regions[1], FID_dcsi_e);
const AccessorWO<double, 3> acc_deta_e(regions[1], FID_deta_e);
const AccessorWO<double, 3> acc_dzet_e(regions[1], FID_dzet_e);
const AccessorWO<double, 3> acc_dcsi_d(regions[1], FID_dcsi_d);
const AccessorWO<double, 3> acc_deta_d(regions[1], FID_deta_d);
const AccessorWO<double, 3> acc_dzet_d(regions[1], FID_dzet_d);
const AccessorWO<double, 3> acc_dcsi_s(regions[1], FID_dcsi_s);
const AccessorWO<double, 3> acc_deta_s(regions[1], FID_deta_s);
const AccessorWO<double, 3> acc_dzet_s(regions[1], FID_dzet_s);
// Extract execution domains
Rect<3> r_MyFluid = runtime->get_index_space_domain(ctx, regions[1].get_logical_region().get_index_space());
Rect<3> Fluid_bounds = args.Fluid_bounds;
// Determine the grid width from bounding box
const double xWidth = args.bBox.v1[0] - args.bBox.v0[0];
const double yWidth = args.bBox.v3[1] - args.bBox.v0[1];
const double zWidth = args.bBox.v4[2] - args.bBox.v0[2];
// loop on the x direction
const coord_t xsize = getSize<Xdir>(Fluid_bounds);
// Here we are assuming C layout of the instance
#ifdef REALM_USE_OPENMP
#pragma omp parallel for collapse(2)
#endif
for (int k = r_MyFluid.lo.z; k <= r_MyFluid.hi.z; k++)
for (int j = r_MyFluid.lo.y; j <= r_MyFluid.hi.y; j++) {
double xM_e;
double xP_e;
// Reconstruct the coordinate at i-1/2 of the first point
{
const Point<3> p = Point<3>{r_MyFluid.lo.x,j,k};
const Point<3> pm1 = warpPeriodic<Xdir, Minus>(Fluid_bounds, p, xsize, offM1(acc_nType_x[p]));
// Reconstruct x for Euler metrics
xM_e = reconstructCoordEuler<Xdir>(acc_centerCoordinates, pm1, xWidth, acc_nType_x[pm1], xsize, Fluid_bounds);
xM_e = unwarpCoordinate<Xdir>(xM_e, xWidth, -1, p, Fluid_bounds);
}
for (int i = r_MyFluid.lo.x; i <= r_MyFluid.hi.x; i++) {
const Point<3> p = Point<3>{i,j,k};
xP_e = reconstructCoordEuler<Xdir>(acc_centerCoordinates, p, xWidth, acc_nType_x[p], xsize, Fluid_bounds);
// Compute the metrics
acc_dcsi_e[p] = 1.0/(xP_e - xM_e);
ComputeDiffusionMetrics<Xdir>(acc_dcsi_d, acc_dcsi_s, acc_centerCoordinates, p,
xWidth, acc_nType_x[p], xsize, Fluid_bounds);
// Store plus values for next point
xM_e = xP_e;
}
}
// loop on the y direction
const coord_t ysize = getSize<Ydir>(Fluid_bounds);
// Here we are assuming C layout of the instance
#ifdef REALM_USE_OPENMP
#pragma omp parallel for collapse(2)
#endif
for (int k = r_MyFluid.lo.z; k <= r_MyFluid.hi.z; k++)
for (int i = r_MyFluid.lo.x; i <= r_MyFluid.hi.x; i++) {
double yM_e;
double yP_e;
// Reconstruct the coordinate at j-1/2 of the first point
{
const Point<3> p = Point<3>{i,r_MyFluid.lo.y,k};
const Point<3> pm1 = warpPeriodic<Ydir, Minus>(Fluid_bounds, p, ysize, offM1(acc_nType_y[p]));
// Reconstruct y for Euler metrics
yM_e = reconstructCoordEuler<Ydir>(acc_centerCoordinates, pm1, yWidth, acc_nType_y[pm1], ysize, Fluid_bounds);
yM_e = unwarpCoordinate<Ydir>(yM_e, yWidth, -1, p, Fluid_bounds);
}
for (int j = r_MyFluid.lo.y; j <= r_MyFluid.hi.y; j++) {
const Point<3> p = Point<3>{i,j,k};
yP_e = reconstructCoordEuler<Ydir>(acc_centerCoordinates, p, yWidth, acc_nType_y[p], ysize, Fluid_bounds);
// Compute the metrics
acc_deta_e[p] = 1.0/(yP_e - yM_e);
ComputeDiffusionMetrics<Ydir>(acc_deta_d, acc_deta_s, acc_centerCoordinates, p,
yWidth, acc_nType_y[p], ysize, Fluid_bounds);
// Store plus values for next point
yM_e = yP_e;
}
}
// loop on the z direction
const coord_t zsize = getSize<Zdir>(Fluid_bounds);
// Here we are assuming C layout of the instance
#ifdef REALM_USE_OPENMP
#pragma omp parallel for collapse(2)
#endif
for (int j = r_MyFluid.lo.y; j <= r_MyFluid.hi.y; j++)
for (int i = r_MyFluid.lo.x; i <= r_MyFluid.hi.x; i++) {
double zM_e;
double zP_e;
// Reconstruct the coordinate at k-1/2 of the first point
{
const Point<3> p = Point<3>{i,j,r_MyFluid.lo.z};
const Point<3> pm1 = warpPeriodic<Zdir, Minus>(Fluid_bounds, p, zsize, offM1(acc_nType_z[p]));
// Reconstruct z for Euler metrics
zM_e = reconstructCoordEuler<Zdir>(acc_centerCoordinates, pm1, zWidth, acc_nType_z[pm1], zsize, Fluid_bounds);
zM_e = unwarpCoordinate<Zdir>(zM_e, zWidth, -1, p, Fluid_bounds);
}
for (int k = r_MyFluid.lo.z; k <= r_MyFluid.hi.z; k++) {
const Point<3> p = Point<3>{i,j,k};
zP_e = reconstructCoordEuler<Zdir>(acc_centerCoordinates, p, zWidth, acc_nType_z[p], zsize, Fluid_bounds);
// Compute the metrics
acc_dzet_e[p] = 1.0/(zP_e - zM_e);
ComputeDiffusionMetrics<Zdir>(acc_dzet_d, acc_dzet_s, acc_centerCoordinates, p,
zWidth, acc_nType_z[p], zsize, Fluid_bounds);
// Store plus values for next point
zM_e = zP_e;
}
}
}
template<direction dir>
void CorrectGhostMetricTask<dir>::cpu_base_impl(
const Args &args,
const std::vector<PhysicalRegion> ®ions,
const std::vector<Future> &futures,
Context ctx, Runtime *runtime)
{
assert(regions.size() == 2);
assert(futures.size() == 0);
// Accessors for variables in the Ghost regions
const AccessorRO< Vec3, 3> acc_centerCoordinates(regions[0], FID_centerCoordinates);
const AccessorRO< int, 3> acc_nType (regions[0], FID_nType);
// Accessors for metrics
const AccessorRW<double, 3> acc_m (regions[1], FID_m);
// Extract execution domains
Rect<3> r_MyFluid = runtime->get_index_space_domain(ctx, regions[1].get_logical_region().get_index_space());
// Here we are assuming C layout of the instance
#ifdef REALM_USE_OPENMP
#pragma omp parallel for collapse(3)
#endif
for (int k = r_MyFluid.lo.z; k <= r_MyFluid.hi.z; k++)
for (int j = r_MyFluid.lo.y; j <= r_MyFluid.hi.y; j++)
for (int i = r_MyFluid.lo.x; i <= r_MyFluid.hi.x; i++) {
const Point<3> p = Point<3>{i,j,k};
if (acc_nType[p] == L_S_node) CorrectLeftStaggered( acc_m, acc_centerCoordinates, p);
else if (acc_nType[p] == L_C_node) CorrectLeftCollocated( acc_m, acc_centerCoordinates, p);
else if (acc_nType[p] == R_S_node) CorrectRightStaggered( acc_m, acc_centerCoordinates, p);
else if (acc_nType[p] == R_C_node) CorrectRightCollocated(acc_m, acc_centerCoordinates, p);
}
}
// Specielize CorrectGhostMetricTask for the X direction
template<>
/*static*/ const char * const CorrectGhostMetricTask<Xdir>::TASK_NAME = "CorrectGhostMetricX";
template<>
/*static*/ const int CorrectGhostMetricTask<Xdir>::TASK_ID = TID_CorrectGhostMetricX;
template<>
/*static*/ const FieldID CorrectGhostMetricTask<Xdir>::FID_nType = FID_nType_x;
template<>
/*static*/ const FieldID CorrectGhostMetricTask<Xdir>::FID_m = FID_dcsi_e;
// Specielize CorrectGhostMetricTask for the Y direction
template<>
/*static*/ const char * const CorrectGhostMetricTask<Ydir>::TASK_NAME = "CorrectGhostMetricY";
template<>
/*static*/ const int CorrectGhostMetricTask<Ydir>::TASK_ID = TID_CorrectGhostMetricY;
template<>
/*static*/ const FieldID CorrectGhostMetricTask<Ydir>::FID_nType = FID_nType_y;
template<>
/*static*/ const FieldID CorrectGhostMetricTask<Ydir>::FID_m = FID_deta_e;
// Specielize CorrectGhostMetricTask for the Z direction
template<>
/*static*/ const char * const CorrectGhostMetricTask<Zdir>::TASK_NAME = "CorrectGhostMetricZ";
template<>
/*static*/ const int CorrectGhostMetricTask<Zdir>::TASK_ID = TID_CorrectGhostMetricZ;
template<>
/*static*/ const FieldID CorrectGhostMetricTask<Zdir>::FID_nType = FID_nType_z;
template<>
/*static*/ const FieldID CorrectGhostMetricTask<Zdir>::FID_m = FID_dzet_e;
void register_metric_tasks() {
TaskHelper::register_hybrid_variants<InitializeMetricTask>();
TaskHelper::register_hybrid_variants<CorrectGhostMetricTask<Xdir>>();
TaskHelper::register_hybrid_variants<CorrectGhostMetricTask<Ydir>>();
TaskHelper::register_hybrid_variants<CorrectGhostMetricTask<Zdir>>();
};