-
Notifications
You must be signed in to change notification settings - Fork 38
/
Copy pathindex.qmd
88 lines (62 loc) · 2.61 KB
/
index.qmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
---
pagetitle: "Stan"
toc: false
page-layout: custom
section-divs: false
hide-description: true
description: |
Stan combines powerful statistical modeling capabilities with user-friendly interfaces, an active community, and a commitment to open-source development.
aliases:
- events/index.html
- users/index.html
css: index.css
code-copy: false
---
::: {.hero-banner}
:::: {.content-block}
# Stan: Software for Bayesian Data Analysis
::::: {.hero-text .grid}
:::::: {.g-col-12 .g-col-md-8}
### Bayesian Modeling
Stan enables sophisticated statistical modeling using Bayesian inference, allowing for more accurate and interpretable results in complex data scenarios.
### Flexible and Scalable
Stan's probabilistic programming language is suitable for a wide range of applications, from simple linear regression to multi-level models and time-series analysis.
### Multi-Language, Cross-Platform Toolkit
Interfaces for Python, Julia, R, and the Unix shell make it easy to use Stan in any programming environment,
on laptops, clusters, or in the cloud. A rich ecosystem of tools for validation and visualization support
decision-making and communication.
::::::
:::::: {.g-col-12 .g-col-md-4 .hero-code}
```{.stan filename="bernoulli.stan"}
data {
int<lower=0> N;
array[N] int<lower=0, upper=1> y;
}
parameters {
real<lower=0, upper=1> theta;
}
model {
// uniform prior on interval 0,1
theta ~ beta(1, 1);
y ~ bernoulli(theta);
}
```
::::::
:::::
::::: {.hero-buttons style="position: relative; display: flex; justify-content: center;"}
[Get Started](install/){.btn-action-primary .btn-action .btn .btn-success .btn-lg role="button"}
:::::
::::
:::
::: {.content-block}
### Community Resources
* The Stan [forums](https://discourse.mc-stan.org) provide support for all user levels and topics, from installing software, to writing Stan programs, to advanced Bayesian modeling techniques and methodology.
* Stan's [documentation](https://mc-stan.org/docs), [tutorials](learn-stan/tutorials.qmd), and [case studies](learn-stan/case-studies.qmd) help users learn and use Stan effectively in their own projects.
The [Prior Choice Recommendations](https://github.com/stan-dev/stan/wiki/Prior-Choice-Recommendations) wiki page provides guidance on appropriate priors for use with Stan.
---
### Developer Resources
* The [Stan Developer Wiki](https://github.com/stan-dev/stan/wiki)
* The [Stan Forums Developers category](https://discourse.mc-stan.org/c/stan-dev/10)
* The Stan slack channel [mc-stan.slack.com](https://join.slack.com/t/mc-stan/shared_invite/zt-1le4ebi4m-UMtiOkJb4gcS16qz2wIYCw)
is for informal developer discussions.
:::