-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils.py
295 lines (237 loc) · 8.12 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
#!/usr/bin/env python
import sys
import array
import random
import numpy as np
from skimage.color import rgb2gray
from skimage.transform import resize
from skimage.io import imread
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
from inputs import get_gamepad
import math
import threading
import cv2
from tqdm import tqdm
def get_frame(cap):
ret, frame = cap.read()
# crop frame
frame = frame[260:900,200:1720]
# frame = frame[:,:,::-1]
return frame
def resize_image(img):
im = cv2.resize(img, (Sample.IMG_W, Sample.IMG_H))
blur_im = cv2.GaussianBlur(im, [3,3], cv2.BORDER_DEFAULT)
tim = np.array(blur_im)
return tim
class Screenshot(object):
SRC_W = 640
SRC_H = 480
SRC_D = 3
OFFSET_X = 200
OFFSET_Y = 500
class Sample:
IMG_W = 200
IMG_H = 66
IMG_D = 3
class XboxController(object):
MAX_TRIG_VAL = math.pow(2, 8)
MAX_JOY_VAL = math.pow(2, 15)
def __init__(self):
self.LeftJoystickY = 0
self.LeftJoystickX = 0
self.RightJoystickY = 0
self.RightJoystickX = 0
self.LeftTrigger = 0
self.RightTrigger = 0
self.LeftBumper = 0
self.RightBumper = 0
self.A = 0
self.X = 0
self.Y = 0
self.B = 0
self.LeftThumb = 0
self.RightThumb = 0
self.Back = 0
self.Start = 0
self.LeftDPad = 0
self.RightDPad = 0
self.UpDPad = 0
self.DownDPad = 0
self._monitor_thread = threading.Thread(target=self._monitor_controller, args=())
self._monitor_thread.daemon = True
self._monitor_thread.start()
def read(self):
x = self.LeftJoystickX
y = self.LeftJoystickY
a = self.A
b = self.X # b=1, x=2
rb = self.RightBumper
return [x, y, a, b, rb]
def _monitor_controller(self):
while True:
events = get_gamepad()
for event in events:
if event.code == 'ABS_Y':
self.LeftJoystickY = event.state / XboxController.MAX_JOY_VAL # normalize between -1 and 1
elif event.code == 'ABS_X':
self.LeftJoystickX = event.state / XboxController.MAX_JOY_VAL # normalize between -1 and 1
elif event.code == 'ABS_RY':
self.RightJoystickY = event.state / XboxController.MAX_JOY_VAL # normalize between -1 and 1
elif event.code == 'ABS_RX':
self.RightJoystickX = event.state / XboxController.MAX_JOY_VAL # normalize between -1 and 1
elif event.code == 'ABS_Z':
self.LeftTrigger = event.state / XboxController.MAX_TRIG_VAL # normalize between 0 and 1
elif event.code == 'ABS_RZ':
self.RightTrigger = event.state / XboxController.MAX_TRIG_VAL # normalize between 0 and 1
elif event.code == 'BTN_TL':
self.LeftBumper = event.state
elif event.code == 'BTN_TR':
self.RightBumper = event.state
elif event.code == 'BTN_SOUTH':
self.A = event.state
elif event.code == 'BTN_NORTH':
self.X = event.state
elif event.code == 'BTN_WEST':
self.Y = event.state
elif event.code == 'BTN_EAST':
self.B = event.state
elif event.code == 'BTN_THUMBL':
self.LeftThumb = event.state
elif event.code == 'BTN_THUMBR':
self.RightThumb = event.state
elif event.code == 'BTN_SELECT':
self.Back = event.state
elif event.code == 'BTN_START':
self.Start = event.state
elif event.code == 'BTN_TRIGGER_HAPPY1':
self.LeftDPad = event.state
elif event.code == 'BTN_TRIGGER_HAPPY2':
self.RightDPad = event.state
elif event.code == 'BTN_TRIGGER_HAPPY3':
self.UpDPad = event.state
elif event.code == 'BTN_TRIGGER_HAPPY4':
self.DownDPad = event.state
class Data(object):
def __init__(self):
self._X = np.load("data/X.npy")
self._y = np.load("data/y.npy")
self._epochs_completed = 0
self._index_in_epoch = 0
self._num_examples = self._X.shape[0]
@property
def num_examples(self):
return self._num_examples
def next_batch(self, batch_size):
start = self._index_in_epoch
self._index_in_epoch += batch_size
if self._index_in_epoch > self._num_examples:
# Finished epoch
self._epochs_completed += 1
# Start next epoch
start = 0
self._index_in_epoch = batch_size
assert batch_size <= self._num_examples
end = self._index_in_epoch
return self._X[start:end], self._y[start:end]
def load_sample(sample):
image_files = np.loadtxt(sample + '/data.csv', delimiter=',', dtype=str, usecols=(0,))
joystick_values = np.loadtxt(sample + '/data.csv', delimiter=',', usecols=(1,))
joystick_values_new = []
for jv in joystick_values:
# print(jv)
joystick_values_new.append(jv * (1.0/0.65))
# joystick_values_new.append([])
return image_files, joystick_values_new
# training data viewer
def viewer(sample):
image_files, joystick_values = load_sample(sample)
plotData = []
plt.ion()
plt.figure('viewer', figsize=(16, 6))
for i in range(len(image_files)):
# joystick
# print(i, " ", joystick_values[i,:])
# format data
plotData.append( joystick_values[i,:] )
if len(plotData) > 30:
plotData.pop(0)
x = np.asarray(plotData)
# image (every 3rd)
if (i % 3 == 0):
plt.subplot(121)
image_file = image_files[i]
img = mpimg.imread(image_file)
plt.imshow(img)
# plot
plt.subplot(122)
plt.plot(range(i,i+len(plotData)), x[:,0], 'r')
# plt.hold(True)
plt.plot(range(i,i+len(plotData)), x[:,1], 'b')
plt.plot(range(i,i+len(plotData)), x[:,2], 'g')
plt.plot(range(i,i+len(plotData)), x[:,3], 'k')
plt.plot(range(i,i+len(plotData)), x[:,4], 'y')
plt.draw()
# plt.hold(False)
plt.pause(0.00001) # seconds
i += 1
def prepare2(samples):
X = []
y = []
len_mid = 0
len_r = 0
len_l = 0
mid_list = []
for sample in samples:
# print(sample)
# load sample
image_files, joystick_values = load_sample(sample)
for i in range(len(joystick_values)):
jv = joystick_values[i]
# print(jv)
if(abs(jv) < 0.1):
len_mid += 1
if(jv > 0.1):
len_r += 1
if(jv < -0.1):
len_l += 1
mid_list.append(image_files[i])
print(f"Lens: {len_l} {len_mid} {len_r}")
random.shuffle(mid_list)
r = mid_list[:len_l - len_mid]
# print(r)
return r
# prepare training data
def prepare(samples):
print("Preparing data")
X = []
y = []
for sample in samples:
print(sample)
# Used to unbias samples
ignore_list = prepare2([sample])
# load sample
image_files, joystick_values = load_sample(sample)
joystick_values_generated = []
for i in tqdm(range(len(image_files))):
jv = joystick_values[i]
i = image_files[i]
# if i in ignore_list:
# continue
image = imread(i)
vec = resize_image(image)
X.append(vec)
joystick_values_generated.append(jv)
y.append(joystick_values_generated)
print("Saving to file...")
X = np.asarray(X)
y = np.concatenate(y)
np.save("data/X", X)
np.save("data/y", y)
print("Done!")
return
if __name__ == '__main__':
if sys.argv[1] == 'viewer':
viewer(sys.argv[2])
elif sys.argv[1] == 'prepare':
prepare(sys.argv[2:])