forked from MhLiao/DB
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval.py
193 lines (178 loc) · 9.05 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
#!python3
import argparse
import os
import torch
import yaml
from tqdm import tqdm
import numpy as np
from trainer import Trainer
# tagged yaml objects
from experiment import Structure, TrainSettings, ValidationSettings, Experiment
from concern.log import Logger
from data.data_loader import DataLoader
from data.image_dataset import ImageDataset
from training.checkpoint import Checkpoint
from training.learning_rate import (
ConstantLearningRate, PriorityLearningRate, FileMonitorLearningRate
)
from training.model_saver import ModelSaver
from training.optimizer_scheduler import OptimizerScheduler
from concern.config import Configurable, Config
import time
def main():
parser = argparse.ArgumentParser(description='Text Recognition Training')
parser.add_argument('exp', type=str)
parser.add_argument('--batch_size', type=int,
help='Batch size for training')
parser.add_argument('--resume', type=str, help='Resume from checkpoint')
parser.add_argument('--result_dir', type=str, default='./results/', help='path to save results')
parser.add_argument('--epochs', type=int, help='Number of training epochs')
parser.add_argument('--start_iter', type=int,
help='Begin counting iterations starting from this value (should be used with resume)')
parser.add_argument('--start_epoch', type=int,
help='Begin counting epoch starting from this value (should be used with resume)')
parser.add_argument('--max_size', type=int, help='max length of label')
parser.add_argument('--data', type=str,
help='The name of dataloader which will be evaluated on.')
parser.add_argument('--thresh', type=float,
help='The threshold to replace it in the representers')
parser.add_argument('--box_thresh', type=float, default=0.6,
help='The threshold to replace it in the representers')
parser.add_argument('--verbose', action='store_true',
help='show verbose info')
parser.add_argument('--no-verbose', action='store_true',
help='show verbose info')
parser.add_argument('--visualize', action='store_true',
help='visualize maps in tensorboard')
parser.add_argument('--resize', action='store_true',
help='resize')
parser.add_argument('--polygon', action='store_true',
help='output polygons if true')
parser.add_argument('--eager', '--eager_show', action='store_true', dest='eager_show',
help='Show iamges eagerly')
parser.add_argument('--speed', action='store_true', dest='test_speed',
help='Test speed only')
parser.add_argument('--dest', type=str,
help='Specify which prediction will be used for decoding.')
parser.add_argument('--debug', action='store_true', dest='debug',
help='Run with debug mode, which hacks dataset num_samples to toy number')
parser.add_argument('--no-debug', action='store_false',
dest='debug', help='Run without debug mode')
parser.add_argument('-d', '--distributed', action='store_true',
dest='distributed', help='Use distributed training')
parser.add_argument('--local_rank', dest='local_rank', default=0,
type=int, help='Use distributed training')
parser.add_argument('-g', '--num_gpus', dest='num_gpus', default=1,
type=int, help='The number of accessible gpus')
parser.set_defaults(debug=False, verbose=False)
args = parser.parse_args()
args = vars(args)
args = {k: v for k, v in args.items() if v is not None}
conf = Config()
experiment_args = conf.compile(conf.load(args['exp']))['Experiment']
experiment_args.update(cmd=args)
experiment = Configurable.construct_class_from_config(experiment_args)
Eval(experiment, experiment_args, cmd=args, verbose=args['verbose']).eval(args['visualize'])
class Eval:
def __init__(self, experiment, args, cmd=dict(), verbose=False):
self.experiment = experiment
experiment.load('evaluation', **args)
self.data_loaders = experiment.evaluation.data_loaders
self.args = cmd
self.logger = experiment.logger
model_saver = experiment.train.model_saver
self.structure = experiment.structure
self.model_path = cmd.get(
'resume', os.path.join(
self.logger.save_dir(model_saver.dir_path),
'final'))
self.verbose = verbose
def init_torch_tensor(self):
# Use gpu or not
torch.set_default_tensor_type('torch.FloatTensor')
if torch.cuda.is_available():
self.device = torch.device('cuda')
torch.set_default_tensor_type('torch.cuda.FloatTensor')
else:
self.device = torch.device('cpu')
def init_model(self):
model = self.structure.builder.build(self.device)
return model
def resume(self, model, path):
if not os.path.exists(path):
self.logger.warning("Checkpoint not found: " + path)
return
self.logger.info("Resuming from " + path)
states = torch.load(
path, map_location=self.device)
model.load_state_dict(states, strict=False)
self.logger.info("Resumed from " + path)
def report_speed(self, model, batch, times=100):
data = {k: v[0:1]for k, v in batch.items()}
if torch.cuda.is_available():
torch.cuda.synchronize()
start = time.time()
for _ in range(times):
pred = model.forward(data)
for _ in range(times):
output = self.structure.representer.represent(batch, pred, is_output_polygon=False)
time_cost = (time.time() - start) / times
self.logger.info('Params: %s, Inference speed: %fms, FPS: %f' % (
str(sum(p.numel() for p in model.parameters() if p.requires_grad)),
time_cost * 1000, 1 / time_cost))
return time_cost
def format_output(self, batch, output):
batch_boxes, batch_scores = output
for index in range(batch['image'].size(0)):
original_shape = batch['shape'][index]
filename = batch['filename'][index]
result_file_name = 'res_' + filename.split('/')[-1].split('.')[0] + '.txt'
result_file_path = os.path.join(self.args['result_dir'], result_file_name)
boxes = batch_boxes[index]
scores = batch_scores[index]
if self.args['polygon']:
with open(result_file_path, 'wt') as res:
for i, box in enumerate(boxes):
box = np.array(box).reshape(-1).tolist()
result = ",".join([str(int(x)) for x in box])
score = scores[i]
res.write(result + ',' + str(score) + "\n")
else:
with open(result_file_path, 'wt') as res:
for i in range(boxes.shape[0]):
score = scores[i]
if score < self.args['box_thresh']:
continue
box = boxes[i,:,:].reshape(-1).tolist()
result = ",".join([str(int(x)) for x in box])
res.write(result + ',' + str(score) + "\n")
def eval(self, visualize=False):
self.init_torch_tensor()
model = self.init_model()
self.resume(model, self.model_path)
all_matircs = {}
model.eval()
vis_images = dict()
with torch.no_grad():
for _, data_loader in self.data_loaders.items():
raw_metrics = []
for i, batch in tqdm(enumerate(data_loader), total=len(data_loader)):
if self.args['test_speed']:
time_cost = self.report_speed(model, batch, times=50)
continue
pred = model.forward(batch, training=False)
output = self.structure.representer.represent(batch, pred, is_output_polygon=self.args['polygon'])
if not os.path.isdir(self.args['result_dir']):
os.mkdir(self.args['result_dir'])
self.format_output(batch, output)
raw_metric = self.structure.measurer.validate_measure(batch, output, is_output_polygon=self.args['polygon'], box_thresh=self.args['box_thresh'])
raw_metrics.append(raw_metric)
if visualize and self.structure.visualizer:
vis_image = self.structure.visualizer.visualize(batch, output, pred)
self.logger.save_image_dict(vis_image)
vis_images.update(vis_image)
metrics = self.structure.measurer.gather_measure(raw_metrics, self.logger)
for key, metric in metrics.items():
self.logger.info('%s : %f (%d)' % (key, metric.avg, metric.count))
if __name__ == '__main__':
main()