forked from coupriec/VideoPredictionICLR2016
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathimage_error_measures.lua
152 lines (116 loc) · 4.53 KB
/
image_error_measures.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
local iscuda=...
-- useful to fast image gradient computation
dy = nn.Sequential()
dy:add(nn.SpatialZeroPadding(0,0,1, -1))
dx = nn.Sequential()
dx:add(nn.SpatialZeroPadding(1, -1, 0, 0))
if iscuda==true then
dy:cuda()
dx:cuda()
end
--------------------------------------------------------------------------------
-- Calcul du PSNR entre 2 images
function PSNR(true_frame, pred)
local eps = 0.0001
-- if true_frame:size(1) == 1 then true_frame = true_frame[1] end
-- if pred:size(1) == 1 then pred = pred[1] end
local prediction_error = 0
for i = 1, pred:size(2) do
for j = 1, pred:size(3) do
for c = 1, pred:size(1) do
-- put image from -1 to 1 to 0 and 255
prediction_error = prediction_error +
(pred[c][i][j] - true_frame[c][i][j])^2
end
end
end
--MSE
prediction_error=128*128*prediction_error/(pred:size(1)*pred:size(2)*pred:size(3))
--PSNR
if prediction_error>eps then
prediction_error = 10*torch.log((255*255)/ prediction_error)/torch.log(10)
else
prediction_error = 10*torch.log((255*255)/ eps)/torch.log(10)
end
return prediction_error
end
--------------------------------------------------------------------------------
-- Calcul du SSIM
function SSIM(img1, img2)
--[[
%This is an implementation of the algorithm for calculating the
%Structural SIMilarity (SSIM) index between two images. Please refer
%to the following paper:
%
%Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, "Image
%quality assessment: From error visibility to structural similarity"
%IEEE Transactios on Image Processing, vol. 13, no. 4, pp.600-612,
%Apr. 2004.
%
%Input : (1) img1: the first image being compared
% (2) img2: the second image being compared
% (3) K: constants in the SSIM index formula (see the above
% reference). defualt value: K = [0.01 0.03]
% (4) window: local window for statistics (see the above
% reference). default widnow is Gaussian given by
% window = fspecial('gaussian', 11, 1.5);
% (5) L: dynamic range of the images. default: L = 255
%
%Output: mssim: the mean SSIM index value between 2 images.
% If one of the images being compared is regarded as
% perfect quality, then mssim can be considered as the
% quality measure of the other image.
% If img1 = img2, then mssim = 1.]]
if img1:size(1) > 2 then
img1 = image.rgb2y(img1)
img1 = img1[1]
img2 = image.rgb2y(img2)
img2 = img2[1]
end
-- place images between 0 and 255.
img1:add(1):div(2):mul(255)
img2:add(1):div(2):mul(255)
local K1 = 0.01;
local K2 = 0.03;
local L = 255;
local C1 = (K1*L)^2;
local C2 = (K2*L)^2;
local window = image.gaussian(11, 1.5/11,0.0708);
local window = window:div(torch.sum(window));
local mu1 = image.convolve(img1, window, 'full')
local mu2 = image.convolve(img2, window, 'full')
local mu1_sq = torch.cmul(mu1,mu1);
local mu2_sq = torch.cmul(mu2,mu2);
local mu1_mu2 = torch.cmul(mu1,mu2);
local sigma1_sq = image.convolve(torch.cmul(img1,img1),window,'full')-mu1_sq
local sigma2_sq = image.convolve(torch.cmul(img2,img2),window,'full')-mu2_sq
local sigma12 = image.convolve(torch.cmul(img1,img2),window,'full')-mu1_mu2
local ssim_map = torch.cdiv( torch.cmul((mu1_mu2*2 + C1),(sigma12*2 + C2)) ,
torch.cmul((mu1_sq + mu2_sq + C1),(sigma1_sq + sigma2_sq + C2)));
local mssim = torch.mean(ssim_map);
return mssim
end
------------------------------------------------------------------------------
-- image sharpeness difference measure
function computel1difference(img_pred, img_true )
s = img_true:size()
if img_pred:size(1)==2 then
img_pred = img_pred[{{1},{},{}}]
end
local eps = 0.0001
local diff_gradients = torch.abs(
torch.abs(dx:forward(img_pred)-img_pred)[{{},{2,s[2]-1},{2,s[3]-1}}] -
torch.abs(dx:forward(img_true)-img_true)[{{},{2,s[2]-1},{2,s[3]-1}}]) +
torch.abs(
torch.abs(dy:forward(img_pred)-img_pred)[{{},{2,s[2]-1},{2,s[3]-1}}] -
torch.abs(dy:forward(img_true)-img_true)[{{},{2,s[2]-1},{2,s[3]-1}}])
local prediction_error = torch.sum(diff_gradients)
-- Mean
prediction_error=128*128*prediction_error/(s[1]*s[2]*s[3])
if prediction_error>eps then
prediction_error = 10*torch.log((255*255)/ prediction_error)/torch.log(10)
else
prediction_error = 10*torch.log((255*255)/ eps)/torch.log(10)
end
return prediction_error
end