forked from t3nsor/codebook
-
Notifications
You must be signed in to change notification settings - Fork 0
/
modular.cpp
92 lines (82 loc) · 2.45 KB
/
modular.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
// This is a collection of useful code for solving problems that
// involve modular linear equations. Note that all of the
// algorithms described here work on nonnegative integers.
typedef vector<int> VI;
typedef pair<int,int> PII;
// return a % b (positive value)
int mod(int a, int b) {
return ((a%b)+b)%b;
}
// computes gcd(a,b)
int gcd(int a, int b) {
int tmp;
while(b){a%=b; tmp=a; a=b; b=tmp;}
return a;
}
// computes lcm(a,b)
int lcm(int a, int b) {
return a/gcd(a,b)*b;
}
// returns d = gcd(a,b); finds x,y such that d = ax + by
int extended_euclid(int a, int b, int &x, int &y) {
int xx = y = 0;
int yy = x = 1;
while (b) {
int q = a/b;
int t = b; b = a%b; a = t;
t = xx; xx = x-q*xx; x = t;
t = yy; yy = y-q*yy; y = t;
}
return a;
}
// finds all solutions to ax = b (mod n)
VI modular_linear_equation_solver(int a, int b, int n) {
int x, y;
VI solutions;
int d = extended_euclid(a, n, x, y);
if (!(b%d)) {
x = mod (x*(b/d), n);
for (int i = 0; i < d; i++)
solutions.push_back(mod(x + i*(n/d), n));
}
return solutions;
}
// computes b such that ab = 1 (mod n), returns -1 on failure
int mod_inverse(int a, int n) {
int x, y;
int d = extended_euclid(a, n, x, y);
if (d > 1) return -1;
return mod(x,n);
}
// Chinese remainder theorem (special case): find z such that
// z % x = a, z % y = b. Here, z is unique modulo M = lcm(x,y).
// Return (z,M). On failure, M = -1.
PII chinese_remainder_theorem(int x, int a, int y, int b) {
int s, t;
int d = extended_euclid(x, y, s, t);
if (a%d != b%d) return make_pair(0, -1);
return make_pair(mod(s*b*x+t*a*y,x*y)/d, x*y/d);
}
// Chinese remainder theorem: find z such that
// z % x[i] = a[i] for all i. Note that the solution is
// unique modulo M = lcm_i (x[i]). Return (z,M). On
// failure, M = -1. Note that we do not require the a[i]'s
// to be relatively prime.
PII chinese_remainder_theorem(const VI &x, const VI &a) {
PII ret = make_pair(a[0], x[0]);
for (int i = 1; i < x.size(); i++) {
ret = chinese_remainder_theorem(ret.first, ret.second, x[i], a[i]);
if (ret.second == -1) break;
}
return ret;
}
// computes x and y such that ax + by = c; on failure, x = y =-1
void linear_diophantine(int a, int b, int c, int &x, int &y) {
int d = gcd(a,b);
if (c%d) {
x = y = -1;
} else {
x = c/d * mod_inverse(a/d, b/d);
y = (c-a*x)/b;
}
}