-
Notifications
You must be signed in to change notification settings - Fork 30
/
Copy path__init__.py
95 lines (84 loc) · 3.2 KB
/
__init__.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import torch
from torchvision import transforms
from torch.nn import functional as F
DEVICE = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
def named_rearrange(tensor, axes, new_positions):
"""
Permute and unsqueeze tensor to match target dimensional arrangement
tensor: (Tensor) input
axes: (string tuple) names of dimensions in tensor
new_positions: (string tuple) names of dimensions in result
optionally including new names which will be unsqueezed into singleton dimensions
"""
#this probably makes it slower honestly
if axes == new_positions:
return tensor
#list to dictionary pseudoinverse
axes = {k:v for v,k in enumerate(axes)}
#squeeze axes that need to be gone
missing_axes = [d for d in axes if d not in new_positions]
for d in missing_axes:
dim = axes[d]
if tensor.shape[dim] != 1:
raise ValueError(f"Can't convert tensor of shape {tensor.shape} due to non-singelton axis {d} (dim {dim})")
tensor = tensor.squeeze(axes[d])
del axes[d]
axes.update({k:v-1 for k,v in axes.items() if v > dim})
#add singleton dimensions for missing axes
extra_axes = [d for d in new_positions if d not in axes]
for d in extra_axes:
tensor = tensor.unsqueeze(-1)
axes[d] = tensor.dim()-1
#permute to match output
permutation = [axes[d] for d in new_positions]
return tensor.permute(*permutation)
def format_input(tensor, source, dest):
return named_rearrange(tensor, source.output_axes, dest.input_axes)
def pad_tensor(tensor, target_len):
l = tensor.shape[-1]
if l >= target_len:
return tensor
return F.pad(tensor, (0,target_len-l))
def cat_with_pad(tensors):
max_size = max(t.shape[-1] for t in tensors)
return torch.cat([pad_tensor(t, max_size) for t in tensors])
def format_module(module, dest, *args, **kwargs):
return format_input(module(*args, **kwargs), module, dest)
class ReplaceGrad(torch.autograd.Function):
"""
returns x_forward during forward pass, but evaluates derivates as though
x_backward was retruned instead.
"""
@staticmethod
def forward(ctx, x_forward, x_backward):
ctx.shape = x_backward.shape
return x_forward
@staticmethod
def backward(ctx, grad_in):
return None, grad_in.sum_to_size(ctx.shape)
replace_grad = ReplaceGrad.apply
class ClampWithGrad(torch.autograd.Function):
"""
clamp function
"""
@staticmethod
def forward(ctx, input, min, max):
ctx.min = min
ctx.max = max
ctx.save_for_backward(input)
return input.clamp(min, max)
@staticmethod
def backward(ctx, grad_in):
input, = ctx.saved_tensors
return grad_in * (grad_in * (input - input.clamp(ctx.min, ctx.max)) >= 0), None, None
clamp_with_grad = ClampWithGrad.apply
def clamp_grad(input, min, max):
return replace_grad(input.clamp(min,max), input)
def tv_loss(input):
"""L2 total variation loss, as in Mahendran et al."""
input = F.pad(input, (0, 1, 0, 1), 'replicate')
x_diff = input[..., :-1, 1:] - input[..., :-1, :-1]
y_diff = input[..., 1:, :-1] - input[..., :-1, :-1]
return (x_diff**2 + y_diff**2).mean([1, 2, 3])
normalize = transforms.Normalize(mean=[0.48145466, 0.4578275, 0.40821073],
std=[0.26862954, 0.26130258, 0.27577711])