-
Notifications
You must be signed in to change notification settings - Fork 55
/
spm_Npdf.m
85 lines (78 loc) · 2.72 KB
/
spm_Npdf.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
function f = spm_Npdf(x,u,v)
% Probability Density Function (PDF) of univariate Normal distribution
% FORMAT f = spm_Npdf(x,u,v)
%
% x - ordinates
% u - mean [Defaults to 0]
% v - variance (v>0) [Defaults to 1]
% f - pdf of N(u,v) at x
%__________________________________________________________________________
%
% spm_Npdf returns the Probability Density Function (PDF) for the
% univariate Normal (Gaussian) family of distributions.
%
% Definition:
%--------------------------------------------------------------------------
% Let random variable X have a Normal distribution with mean u and
% variance v, then Z~N(u,v). The Probability Density Function (PDF) of
% the Normal (sometimes called Gaussian) family is f(x), defined on all
% real x, given by: (See Evans et al., Ch29)
%
% 1 ( (x-u)^2 )
% f(r) = ------------ x exp| ------ |
% sqrt(v*2*pi) ( 2v )
%
% The PDF of the standard Normal distribution, with zero mean and unit
% variance, Z~N(0,1), is commonly referred to as \phi(z).
%
% References:
%--------------------------------------------------------------------------
% Evans M, Hastings N, Peacock B (1993)
% "Statistical Distributions"
% 2nd Ed. Wiley, New York
%
% Abramowitz M, Stegun IA, (1964)
% "Handbook of Mathematical Functions"
% US Government Printing Office
%
% Press WH, Teukolsky SA, Vetterling AT, Flannery BP (1992)
% "Numerical Recipes in C"
% Cambridge
%
%__________________________________________________________________________
% Copyright (C) 1994-2011 Wellcome Trust Centre for Neuroimaging
% Andrew Holmes
% $Id: spm_Npdf.m 4182 2011-02-01 12:29:09Z guillaume $
%-Format arguments, note & check sizes
%--------------------------------------------------------------------------
if nargin<3, v=1; end
if nargin<2, u=0; end
if nargin<1, f=[]; return, end
ad = [ndims(x);ndims(u);ndims(v)];
rd = max(ad);
as = [[size(x),ones(1,rd-ad(1))];...
[size(u),ones(1,rd-ad(2))];...
[size(v),ones(1,rd-ad(3))]];
rs = max(as);
xa = prod(as,2)>1;
if sum(xa)>1 && any(any(diff(as(xa,:)),1))
error('non-scalar args must match in size');
end
%-Computation
%--------------------------------------------------------------------------
%-Initialise result to zeros
f = zeros(rs);
%-Only defined for strictly positive variance v. Return NaN if undefined.
md = ( ones(size(x)) & ones(size(u)) & v>0 );
if any(~md(:))
f(~md) = NaN;
warning('Returning NaN for out of range arguments');
end
%-Non-zero where defined
Q = find( md );
if isempty(Q), return, end
if xa(1), Qx=Q; else Qx=1; end
if xa(2), Qu=Q; else Qu=1; end
if xa(3), Qv=Q; else Qv=1; end
%-Compute
f(Q) = exp( -(x(Qx)-u(Qu)).^2 ./ (2*v(Qv)) ) ./ sqrt(2*pi*v(Qv));