-
Notifications
You must be signed in to change notification settings - Fork 55
/
spm_DesMtx.m
674 lines (597 loc) · 26.9 KB
/
spm_DesMtx.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
function [X,Pnames,Index,idx,jdx,kdx]=spm_DesMtx(varargin)
% Design matrix construction from factor level and covariate vectors
% FORMAT [X,Pnames] = spm_DesMtx(<FCLevels-Constraint-FCnames> list)
% FORMAT [X,Pnames,Index,idx,jdx,kdx] = spm_DesMtx(FCLevels,Constraint,FCnames)
%
% <FCLevels-Constraints-FCnames>
% - set of arguments specifying a portion of design matrix (see below)
% - FCnames parameter, or Constraint and FCnames parameters, are optional
% - a list of multiple <FCLevels-Constraint-FCnames> triples can be
% specified, where FCnames or Constraint-FCnames may be omitted
% within any triple. The program then works recursively.
%
% X - design matrix
% Pnames - paramater names as (constructed from FCnames) - a cellstr
% Index - integer index of factor levels
% - only returned when computing a single design matrix partition
%
% idx,jdx,kdx - reference vectors mapping I & Index (described below)
% - only returned when computing a single design matrix partition
% for unconstrained factor effects ('-' or '~')
%
% ----------------
%
% FORMAT [nX,nPnames] = spm_DesMtx('sca',X1,Pnames1,X2,Pnames2,...)
% Produces a scaled design matrix nX with max(abs(nX(:))<=1, suitable
% for imaging with: image((nX+1)*32)
% X1,X2,... - Design matrix partitions
% Pnames1, Pnames2,... - Corresponding parameter name string mtx/cellstr (opt)
% nX - Scaled design matrix
% nPnames - Concatenated parameter names for columns of nX
%
%__________________________________________________________________________
%
% Returns design matrix corresponding to given vectors containing
% levels of a factor; two way interactions; covariates (n vectors);
% ready-made sections of design matrix; and factor by covariate
% interactions.
%
% The specification for the design matrix is passed in sets of arguments,
% each set corresponding to a particular Factor/Covariate/&c., specifying
% a section of the design matrix. The set of arguments consists of the
% FCLevels matrix (Factor/Covariate levels), an optional constraint string,
% and an optional (string) name matrix containing the names of the
% Factor/Covariate/&c.
%
% MAIN EFFECTS: For a main effect, or single factor, the FCLevels
% matrix is an integer vector whose values represent the levels of the
% factor. The integer factor levels need not be positive, nor in
% order. In the '~' constraint types (below), a factor level of zero
% is ignored (treated as no effect), and no corresponding column of
% design matrix is created. Effects for the factor levels are entered
% into the design matrix *in increasing order* of the factor levels.
% Check Pnames to find out which columns correspond to which levels of
% the factor.
%
% TWO WAY INTERACTIONS: For a two way interaction effect between two
% factors, the FCLevels matrix is an nx2 integer matrix whose columns
% indicate the levels of the two factors. An effect is included for
% each unique combination of the levels of the two factors. Again,
% factor levels must be integer, though not necessarily positive.
% Zero levels are ignored in the '~' constraint types described below.
%
% CONSTRAINTS: Each FactorLevels vector/matrix may be followed by an
% (optional) ConstraintString.
%
% ConstraintStrings for main effects are:
% '-' - No Constraint
% '~' - Ignore zero level of factor
% (I.e. cornerPoint constraint on zero level,
% (same as '.0', except zero level is always ignored,
% (even if factor only has zero level, in which case
% (an empty DesMtx results and a warning is given
% '+0' - sum-to-zero constraint
% '+0m' - Implicit sum-to-zero constraint
% '.' - CornerPoint constraint
% '.0' - CornerPoint constraint applied to zero factor level
% (warns if there is no zero factor level)
% Constraints for two way interaction effects are
% '-' - No Constraints
% '~' - Ignore zero level of any factor
% (I.e. cornerPoint constraint on zero level,
% (same as '.ij0', except zero levels are always ignored
% '+i0','+j0','+ij0' - sum-to-zero constraints
% '.i', '.j', '.ij' - CornerPoint constraints
% '.i0','.j0','.ij0' - CornerPoint constraints applied to zero factor level
% (warns if there is no zero factor level)
% '+i0m', '+j0m' - Implicit sum-to-zero constraints
%
% With the exception of the "ignore zero" '~' constraint, constraints
% are only applied if there are sufficient factor levels. CornerPoint
% and explicit sum-to-zero Constraints are applied to the last level of
% the factor.
%
% The implicit sum-to-zero constraints "mean correct" appropriate rows
% of the relevant design matrix block. For a main effect, constraint
% '+0m' "mean corrects" the main effect block across columns,
% corresponding to factor effects B_i, where B_i = B'_i - mean(B'_i) :
% The B'_i are the fitted parameters, effectively *relative* factor
% parameters, relative to their mean. This leads to a rank deficient
% design matrix block. If Matlab's pinv, which implements a
% Moore-Penrose pseudoinverse, is used to solve the least squares
% problem, then the solution with smallest L2 norm is found, which has
% mean(B'_i)=0 provided the remainder of the design is unique (design
% matrix blocks of full rank). In this case therefore the B_i are
% identically the B'_i - the mean correction imposes the constraint.
%
%
% COVARIATES: The FCLevels matrix here is an nxc matrix whose columns
% contain the covariate values. An effect is included for each covariate.
% Covariates are identified by ConstraintString 'C'.
%
%
% PRE-SPECIFIED DESIGN BLOCKS: ConstraintString 'X' identifies a
% ready-made bit of design matrix - the effect is the same as 'C'.
%
%
% FACTOR BY COVARIATE INTERACTIONS: are identified by ConstraintString
% 'FxC'. The last column is understood to contain the covariate. Other
% columns are taken to contain integer FactorLevels vectors. The
% (unconstrained) interaction of the factors is interacted with the
% covariate. Zero factor levels are ignored if ConstraintString '~FxC'
% is used.
%
%
% NAMES: Each Factor/Covariate can be 'named', by passing a name
% string. Pass a string matrix, or cell array (vector) of strings,
% with rows (cells) naming the factors/covariates in the respective
% columns of the FCLevels matrix. These names default to <Fac>, <Cov>,
% <Fac1>, <Fac2> &c., and are used in the construction of the Pnames
% parameter names.
% E.g. for an interaction, spm_DesMtx([F1,F2],'+ij0',['subj';'cond'])
% giving parameter names such as subj*cond_{1,2} etc...
%
% Pnames returns a string matrix whose successive rows describe the
% effects parameterised in the corresponding columns of the design
% matrix. `Fac1*Fac2_{2,3}' would refer to the parameter for the
% interaction of the two factors Fac1 & Fac2, at the 2nd level of the
% former and the 3rd level of the latter. Other forms are
% - Simple main effect (level 1) : <Fac>_{1}
% - Three way interaction (level 1,2,3) : <Fac1>*<Fac2>*<Fac3>_{1,2,3}
% - Two way factor interaction by covariate interaction :
% : <Cov>@<Fac1>*<Fac2>_{1,1}
% - Column 3 of prespecified DesMtx block (if unnamed)
% : <X> [1]
% The special characters `_*()[]{}' are recognised by the scaling
% function (spm_DesMtx('sca',...), and should therefore be avoided
% when naming effects and covariates.
%
%
% INDEX: An Integer Index matrix is returned if only a single block of
% design matrix is being computed (single set of parameters). It
% indexes the actual order of the effect levels in the design matrix block.
% (Factor levels are introduced in order, regardless of order of
% appearence in the factor index matrices, so that the parameters
% vector has a sensible order.) This is used to aid recursion.
%
% Similarly idx,jdx & kdx are indexes returned for a single block of
% design matrix consisting of unconstrained factor effects ('-' or '~').
% These indexes map I and Index (in a similar fashion to the `unique`
% function) as follows:
% - idx & jdx are such that I = Index(:,jdx)' and Index = I(idx,:)'
% where vector I is given as a column vector
% - If the "ignore zeros" constraint '~' is used, then kdx indexes the
% non-zero (combinations) of factor levels, such that
% I(kdx,:) = Index(:,jdx)' and Index == I(kdx(idx),:)'
%
% ----------------
%
% The design matrix scaling feature is designed to return a scaled
% version of a design matrix, with values in [-1,1], suitable for
% visualisation. Special care is taken to apply the same normalisation
% to blocks of design matrix reflecting a single effect, to preserve
% appropriate relationships between columns. Identification of effects
% corresponding to columns of design matrix portions is via the parameter
% names matrices. The design matrix may be passed in any number of
% parts, provided the corresponding parameter names are given. It is
% assumed that the block representing an effect is contained within a
% single partition. Partitions supplied without corresponding parameter
% names are scaled on a column by column basis, the parameters labelled as
% <UnSpec> in the returned nPnames matrix.
%
% Effects are identified using the special characters `_*()[]{}' used in
% parameter naming as follows: (here ? is a wildcard)
% - ?(?) - general block (column normalised)
% - ?[?] - specific block (block normalised)
% - ?_{?} - main effect or interaction of main effects
% - ?@?_{?} - factor by covariate interaction
% Blocks are identified by looking for runs of parameters of the same type
% with the same names: E.g. a block of main effects for factor 'Fac1'
% would have names like Fac1_{?}.
%
% Scaling is as follows:
% * fMRI blocks are scaled around zero to lie in [-1,1]
% * No scaling is carried out if max(abs(tX(:))) is in [.4,1]
% This protects dummy variables from normalisation, even if
% using implicit sum-to-zero constraints.
% * If the block has a single value, it's replaced by 1's
% * FxC blocks are normalised so the covariate values cover [-1,1]
% but leaving zeros as zero.
% * Otherwise, block is scaled to cover [-1,1].
%
%__________________________________________________________________________
% Copyright (C) 1994-2011 Wellcome Trust Centre for Neuroimaging
% Andrew Holmes
% $Id: spm_DesMtx.m 5219 2013-01-29 17:07:07Z spm $
%-Parse arguments for recursive construction of design matrices
%==========================================================================
if ~nargin, error('Insufficient arguments'); end
if ischar(varargin{1})
%-Non-recursive action string usage
Constraint=varargin{1};
elseif nargin>=2 && ~(ischar(varargin{2}) || iscell(varargin{2}))
[X1,Pnames1] = spm_DesMtx(varargin{1});
[X2,Pnames2] = spm_DesMtx(varargin{2:end});
X = [X1,X2]; Pnames = [Pnames1;Pnames2];
return
elseif nargin>=3 && ~(ischar(varargin{3}) || iscell(varargin{3}))
[X1,Pnames1] = spm_DesMtx(varargin{1:2});
[X2,Pnames2] = spm_DesMtx(varargin{3:end});
X = [X1,X2]; Pnames = [Pnames1;Pnames2];
return
elseif nargin>=4
[X1,Pnames1] = spm_DesMtx(varargin{1:3});
[X2,Pnames2] = spm_DesMtx(varargin{4:end});
X = [X1,X2]; Pnames = [Pnames1;Pnames2];
return
else
%-If I is a vector, make it a column vector
I = varargin{1}; if size(I,1)==1, I=I'; end
%-Sort out constraint and Factor/Covariate name parameters
if nargin<2, Constraint = '-'; else Constraint = varargin{2}; end
if isempty(I), Constraint = 'mt'; end
if nargin<3, FCnames = {}; else FCnames = varargin{3}; end
if char(FCnames), FCnames = cellstr(FCnames); end
end
switch lower(Constraint), case 'mt' %-Empty I case
%==========================================================================
X = [];
Pnames = {};
Index = [];
case {'c','x'} %-Covariate effect, or ready-made design matrix
%==========================================================================
%-I contains a covariate (C), or is to be inserted "as is" (X)
X = I;
%-Construct parameter name index
%--------------------------------------------------------------------------
if isempty(FCnames)
if strcmp(Constraint,'C'), FCnames={'<Cov>'}; else FCnames={'<X>'}; end
end
if length(FCnames)==1 && size(X,2)>1
Pnames = cell(size(X,2),1);
for i=1:size(X,2)
Pnames{i} = sprintf('%s [%d]',FCnames{1},i);
end
elseif length(FCnames)~=size(X,2)
error('FCnames doesn''t match covariate/X matrix')
else
Pnames = FCnames;
end
case {'-(1)','~(1)'} %-Simple main effect ('~' ignores zero levels)
%==========================================================================
%-Sort out arguments
%--------------------------------------------------------------------------
if size(I,2)>1, error('Simple main effect requires vector index'), end
if any(I~=floor(I)), error('Non-integer indicator vector'), end
if isempty(FCnames), FCnames = {'<Fac>'};
elseif length(FCnames)>1, error('Too many FCnames'), end
nXrows = size(I,1);
% Sort out unique factor levels - ignore zero level in '~(1)' usage
%--------------------------------------------------------------------------
if Constraint(1)~='~'
[Index,idx,jdx] = unique(I');
kdx = [1:nXrows];
else
[Index,idx,jdx] = unique(I(I~=0)');
kdx = find(I~=0)';
if isempty(Index)
X=[]; Pnames={}; Index=[];
warning(['factor has only zero level - ',...
'returning empty DesMtx partition'])
return
end
end
%-Set up unconstrained X matrix & construct parameter name index
%--------------------------------------------------------------------------
nXcols = length(Index);
%-Columns in ascending order of corresponding factor level
X = zeros(nXrows,nXcols);
Pnames = cell(nXcols,1);
for ii=1:nXcols %-ii indexes i in Index
X(:,ii) = I==Index(ii);
%-Can't use: for i=Index, X(:,i) = I==i; end
% in case Index has holes &/or doesn't start at 1!
Pnames{ii} = sprintf('%s_{%d}',FCnames{1},Index(ii));
end
%-Don't append effect level if only one level
if nXcols==1, Pnames=FCnames; end
case {'-','~'} %-Main effect / interaction ('~' ignores zero levels)
%==========================================================================
if size(I,2)==1
%-Main effect - process directly
[X,Pnames,Index,idx,jdx,kdx] = spm_DesMtx(I,[Constraint,'(1)'],FCnames);
return
end
if any((I(:))~=floor(I(:))), error('Non-integer indicator vector'), end
% Sort out unique factor level combinations & build design matrix
%--------------------------------------------------------------------------
%-Make "raw" index to unique effects
nI = I - ones(size(I,1),1)*min(I);
tmp = max(I)-min(I)+1;
tmp = [fliplr(cumprod(tmp(end:-1:2))),1];
rIndex = sum(nI.*(ones(size(I,1),1)*tmp),2)+1;
%-Ignore combinations where any factor has level zero in '~' usage
if Constraint(1)=='~'
rIndex(any(I==0,2))=0;
if all(rIndex==0)
X=[]; Pnames={}; Index=[];
warning(['no non-zero factor level combinations - ',...
'returning empty DesMtx partition'])
return
end
end
%-Build design matrix based on unique factor combinations
[X,Pnames,sIndex,idx,jdx,kdx]=spm_DesMtx(rIndex,[Constraint,'(1)']);
%-Sort out Index matrix
Index = I(kdx(idx),:)';
%-Construct parameter name index
%--------------------------------------------------------------------------
if isempty(FCnames)
tmp = ['<Fac1>',sprintf('*<Fac%d>',2:size(I,2))];
elseif length(FCnames)==size(I,2)
tmp = [FCnames{1},sprintf('*%s',FCnames{2:end})];
else
error('#FCnames mismatches #Factors in interaction')
end
Pnames = cell(size(Index,2),1);
for c = 1:size(Index,2)
Pnames{c} = ...
[sprintf('%s_{%d',tmp,Index(1,c)),sprintf(',%d',Index(2:end,c)),'}'];
end
case {'fxc','-fxc','~fxc'} %-Factor dependent covariate effect
% ('~' ignores zero factor levels)
%==========================================================================
%-Check
%--------------------------------------------------------------------------
if size(I,2)==1, error('FxC requires multi-column I'), end
F = I(:,1:end-1);
C = I(:,end);
if ~all(all(F==floor(F),1),2)
error('non-integer indicies in F partition of FxC'), end
if isempty(FCnames)
Fnames = '';
Cnames = '<Cov>';
elseif length(FCnames)==size(I,2)
Fnames = FCnames(1:end-1);
Cnames = FCnames{end};
else
error('#FCnames mismatches #Factors+#Cov in FxC')
end
%-Set up design matrix X & names matrix - ignore zero levels if '~FxC' use
%--------------------------------------------------------------------------
if Constraint(1)~='~', [X,Pnames,Index] = spm_DesMtx(F,'-',Fnames);
else [X,Pnames,Index] = spm_DesMtx(F,'~',Fnames); end
X = X.*(C*ones(1,size(X,2)));
Pnames = cellstr([repmat([Cnames,'@'],size(Index,2),1),char(Pnames)]);
case {'.','.0','+0','+0m'} %-Constrained simple main effect
%==========================================================================
if size(I,2)~=1, error('Simple main effect requires vector index'), end
[X,Pnames,Index] = spm_DesMtx(I,'-(1)',FCnames);
%-Impose constraint if more than one effect
%--------------------------------------------------------------------------
%-Apply uniqueness constraints ('.' & '+0') to last effect, which is
% in last column, since column i corresponds to level Index(i)
%-'.0' corner point constraint is applied to zero factor level only
nXcols = size(X,2);
zCol = find(Index==0);
if nXcols==1 && ~strcmp(Constraint,'.0')
error('only one level: can''t constrain')
elseif strcmp(Constraint,'.')
X(:,nXcols)=[]; Pnames(nXcols)=[]; Index(nXcols)=[];
elseif strcmp(Constraint,'.0')
zCol = find(Index==0);
if isempty(zCol), warning('no zero level to constrain')
elseif nXcols==1, error('only one level: can''t constrain'), end
X(:,zCol)=[]; Pnames(zCol)=[]; Index(zCol)=[];
elseif strcmp(Constraint,'+0')
X(find(X(:,nXcols)),:)=-1;
X(:,nXcols)=[]; Pnames(nXcols)=[]; Index(nXcols)=[];
elseif strcmp(Constraint,'+0m')
X = X - 1/nXcols;
end
case {'.i','.i0','.j','.j0','.ij','.ij0','+i0','+j0','+ij0','+i0m','+j0m'}
%-Two way interaction effects
%==========================================================================
if size(I,2)~=2, error('Two way interaction requires Nx2 index'), end
[X,Pnames,Index] = spm_DesMtx(I,'-',FCnames);
%-Implicit sum to zero
%--------------------------------------------------------------------------
if any(strcmp(Constraint,{'+i0m','+j0m'}))
SumIToZero = strcmp(Constraint,'+i0m');
SumJToZero = strcmp(Constraint,'+j0m');
if SumIToZero %-impose implicit SumIToZero constraints
Js = sort(Index(2,:)); Js = Js([1,1+find(diff(Js))]);
for j = Js
rows = find(I(:,2)==j);
cols = find(Index(2,:)==j);
if length(cols)==1
error('Only one level: Can''t constrain')
end
X(rows,cols) = X(rows,cols) - 1/length(cols);
end
end
if SumJToZero %-impose implicit SumJToZero constraints
Is = sort(Index(1,:)); Is = Is([1,1+find(diff(Is))]);
for i = Is
rows = find(I(:,1)==i);
cols = find(Index(1,:)==i);
if length(cols)==1
error('Only one level: Can''t constrain')
end
X(rows,cols) = X(rows,cols) - 1/length(cols);
end
end
%-Explicit sum to zero
%--------------------------------------------------------------------------
elseif any(strcmp(Constraint,{'+i0','+j0','+ij0'}))
SumIToZero = any(strcmp(Constraint,{'+i0','+ij0'}));
SumJToZero = any(strcmp(Constraint,{'+j0','+ij0'}));
if SumIToZero %-impose explicit SumIToZero constraints
i = max(Index(1,:));
if i==min(Index(1,:))
error('Only one i level: Can''t constrain'), end
cols = find(Index(1,:)==i); %-columns to delete
for c=cols
j=Index(2,c);
t_cols=find(Index(2,:)==j);
t_rows=find(X(:,c));
%-This ij equals -sum(ij) over other i
% (j fixed for this col c).
%-So subtract weight of this ij factor from
% weights for all other ij factors for this j
% to impose the constraint.
X(t_rows,t_cols) = X(t_rows,t_cols)...
-X(t_rows,c)*ones(1,length(t_cols));
%-( Next line would do it, but only first time round, when all )
% ( weights are 1, and only one weight per row for this j. )
% X(t_rows,t_cols)=-1*ones(length(t_rows),length(t_cols));
end
%-delete columns
X(:,cols)=[]; Pnames(cols)=[]; Index(:,cols)=[];
end
if SumJToZero %-impose explicit SumJToZero constraints
j = max(Index(2,:));
if j==min(Index(2,:))
error('Only one j level: Can''t constrain'), end
cols=find(Index(2,:)==j);
for c=cols
i=Index(1,c);
t_cols=find(Index(1,:)==i);
t_rows=find(X(:,c));
X(t_rows,t_cols) = X(t_rows,t_cols)...
-X(t_rows,c)*ones(1,length(t_cols));
end
%-delete columns
X(:,cols)=[]; Pnames(cols)=[]; Index(:,cols)=[];
end
%-Corner point constraints
%--------------------------------------------------------------------------
elseif any(strcmp(Constraint,{'.i','.i0','.j','.j0','.ij','.ij0'}))
CornerPointI = any(strcmp(Constraint,{'.i','.i0','.ij','.ij0'}));
CornerPointJ = any(strcmp(Constraint,{'.j','.j0','.ij','.ij0'}));
if CornerPointI %-impose CornerPointI constraints
if Constraint(end)~='0', i = max(Index(1,:));
else i = 0; end
cols=find(Index(1,:)==i); %-columns to delete
if isempty(cols)
warning('no zero i level to constrain')
elseif all(Index(1,:)==i)
error('only one i level: can''t constrain')
end
%-delete columns
X(:,cols)=[]; Pnames(cols)=[]; Index(:,cols)=[];
end
if CornerPointJ %-impose CornerPointJ constraints
if Constraint(end)~='0', j = max(Index(2,:));
else j = 0; end
cols=find(Index(2,:)==j);
if isempty(cols)
warning('no zero j level to constrain')
elseif all(Index(2,:)==j)
error('only one j level: can''t constrain')
end
X(:,cols)=[]; Pnames(cols)=[]; Index(:,cols)=[];
end
end
case {'sca'} %-Scale DesMtx for visualisation
%==========================================================================
nX = []; nPnames = {}; Carg = 2;
%-Loop through the arguments accumulating scaled design matrix nX
%--------------------------------------------------------------------------
while Carg <= nargin
rX = varargin{Carg}; Carg=Carg+1;
if Carg<=nargin && ~isempty(varargin{Carg}) && ...
(ischar(varargin{Carg}) || iscellstr(varargin{Carg}))
rPnames = char(varargin{Carg}); Carg=Carg+1;
else %-No names to work out blocks from - normalise by column
rPnames = repmat('<UnSpec>',size(rX,2),1);
end
%-Pad out rPnames with 20 spaces to permit looking past line ends
rPnames = [rPnames,repmat(' ',size(rPnames,1),20)];
while ~isempty(rX)
if size(rX,2)>1 && max([1,find(rPnames(1,:)=='(')]) < ...
max([0,find(rPnames(1,:)==')')])
%-Non-specific block: find the rest & column normalise round zero
%======================================================================
c1 = max(find(rPnames(1,:)=='('));
d = any(diff(abs(rPnames(:,1:c1))),2)...
| ~any(rPnames(2:end,c1+1:end)==')',2);
t = min(find([d;1]));
%-Normalise columns of block around zero
%------------------------------------------------------------------
tmp = size(nX,2);
nX = [nX, zeros(size(rX,1),t)];
for i=1:t
if ~any(rX(:,i))
nX(:,tmp+i) = 0;
else
nX(:,tmp+i) = rX(:,i)/max(abs(rX(:,i)));
end
end
nPnames = [nPnames; cellstr(rPnames(1:t,:))];
rX(:,1:t) = []; rPnames(1:t,:)=[];
elseif size(rX,2)>1 && max([1,find(rPnames(1,:)=='[')]) < ...
max([0,find(rPnames(1,:)==']')])
%-Block: find the rest & normalise together
%======================================================================
c1 = max(find(rPnames(1,:)=='['));
d = any(diff(abs(rPnames(:,1:c1))),2)...
| ~any(rPnames(2:end,c1+1:end)==']',2);
t = min(find([d;1]));
%-Normalise block
%------------------------------------------------------------------
nX = [nX,sf_tXsca(rX(:,1:t))];
nPnames = [nPnames; cellstr(rPnames(1:t,:))];
rX(:,1:t) = []; rPnames(1:t,:)=[];
elseif size(rX,2)>1 && max([1,strfind(rPnames(1,:),'_{')]) < ...
max([0,find(rPnames(1,:)=='}')])
%-Factor, interaction of factors, or FxC: find the rest...
%======================================================================
c1 = max(strfind(rPnames(1,:),'_{'));
d = any(diff(abs(rPnames(:,1:c1+1))),2)...
| ~any(rPnames(2:end,c1+2:end)=='}',2);
t = min(find([d;1]));
%-Normalise block
%------------------------------------------------------------------
tX = rX(:,1:t);
if any(rPnames(1,1:c1)=='@') %-FxC interaction
C = tX(tX~=0);
tX(tX~=0) = 2*(C-min(C))/max(C-min(C))-1;
nX = [nX,tX];
else %-Straight interaction
nX = [nX,sf_tXsca(tX)];
end
nPnames = [nPnames; cellstr(rPnames(1:t,:))];
rX(:,1:t) = []; rPnames(1:t,:)=[];
else %-Dunno! Just column normalise
%======================================================================
nX = [nX,sf_tXsca(rX(:,1))];
nPnames = [nPnames; cellstr(rPnames(1,:))];
rX(:,1) = []; rPnames(1,:)=[];
end
end
end
X = nX;
Pnames = nPnames;
otherwise %-Mis-specified arguments - ERROR
%==========================================================================
if ischar(varargin{1})
error('unrecognised action string')
else
error('unrecognised constraint type')
end
end
%==========================================================================
% function nX = sf_tXsca(tX)
%==========================================================================
function nX = sf_tXsca(tX)
if nargin==0, nX=[]; return, end
if abs(max(abs(tX(:)))-0.7)<(.3+1e-10)
nX = tX;
elseif all(tX(:)==tX(1))
nX = ones(size(tX));
elseif max(abs(tX(:)))<1e-10
nX = zeros(size(tX));
else
nX = 2*(tX-min(tX(:)))/max(tX(:)-min(tX(:)))-1;
end