-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathgenerate.py
298 lines (244 loc) · 13.2 KB
/
generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
"""
Copyright 2021 Aditya Gomatam.
This file is part of music-transformer (https://github.com/spectraldoy/music-transformer), my project to build and
train a Music Transformer. music-transformer is open-source software licensed under the terms of the GNU General
Public License v3.0. music-transformer is free software: you can redistribute it and/or modify it under the terms of
the GNU General Public License as published by the Free Software Foundation, either version 3 of the License,
or (at your option) any later version. music-transformer is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details. A copy of this license can be found within the GitHub repository
for music-transformer, or at https://www.gnu.org/licenses/gpl-3.0.html.
"""
import torch
import mido
import time
import argparse
from masking import *
from tokenizer import *
from vocabulary import *
"""
Functionality to use Music-Transformer model after (or during) training to generate audio
"""
def load_model(filepath, compile = False):
"""
Load a MusicTransformer from a saved pytorch state_dict and hparams. The input filepath should point to a .pt
file in which has been saved a dictionary containing the model state dict and hparams, ex:
torch.save(filepath, {
"state_dict": MusicTransformer.state_dict(),
"hparams": hparams (dict)
})
Args:
filepath (str): path to single .pt file containing the dictionary as described above
compile (bool): whether or not to compile the model after loading, as compiled models
sometimes raise warnings during execution
Returns:
the loaded MusicTransformer model
"""
from model import MusicTransformer
from hparams import hparams, device
file = torch.load(filepath, map_location=device)
if "hparams" not in file:
file["hparams"] = hparams
model = MusicTransformer(**file["hparams"]).to(device)
model.load_state_dict(file["state_dict"])
if compile:
model = torch.compile(model)
model.eval()
return model
def greedy_decode(model, inp, mode="categorical", temperature=1.0, k=None):
"""
The transformer is an autoregressive model, which means that at the inference stage, it makes next predictions
based on its previous outputs. This method implements the decoding functionality for autoregressive computation
of outputs. This function will let the model generate until it predicts an end token, or encounters a
RuntimeError or KeyboardInterrupt. The greedy in greedy_decode comes from the fact that we are not considering
the entire output of the model at each step as the true output, and are simply iteratively clipping the very last
index of the output and appending it to the input to the model, to autoregressively compute the next output.
Args:
model: MusicTransformer model whose outputs to greedily decode
inp (list): list of midi events in the vocabulary for the model to continue; set simply to ["<start>"] for the
model to generate from scratch
mode (str): specify 'categorical' or 'argmax' decode sampling; default: categorical
temperature (float ~ 1.0): softmax temperature to make the model outputs more diverse (high temperature) or less
diverse (low temperature); default: 1.0
k (int): number of top k samples to categorically sample to get the predicted next token; default: None, i.e.,
all samples will be considered, not just the top k
Returns:
torch.LongTensor of token_ids autoregressively generated by the model
"""
# convert input tokens to list of token ids
inp = events_to_indices(inp)
# make sure inp starts with the start token
if inp[0] != start_token:
inp = [start_token] + inp
# convert to torch tensor and convert to correct dimensions for masking
inp = torch.tensor(inp, dtype=torch.int64, device=device)
inp = inp.unsqueeze(0)
n = inp.dim() + 2
# parameters for decode sampling
if not callable(temperature):
temperature__ = temperature
del temperature
def temperature(x):
return temperature__
if k is not None and not callable(k):
k__ = k
del k
def k(x):
return k__
# autoregressively generate output
torch.set_float32_matmul_precision("high")
try:
with torch.no_grad():
while True:
# get next predicted idx
predictions = model(inp, mask=create_mask(inp, n))
# divide logits by temperature as a function of current length of sequence
predictions /= temperature(inp[-1].shape[-1])
# sample the next predicted idx
if mode == "argmax":
prediction = torch.argmax(predictions[..., -1, :], dim=-1)
elif k is not None:
# get top k predictions, where k is a function of current length of sequence
top_k_preds = torch.topk(predictions[..., -1, :], k(inp[-1].shape[-1]), dim=-1)
# sample top k predictions
predicted_idx = torch.distributions.Categorical(logits=top_k_preds.values[..., -1, :]).sample()
# get the predicted id
prediction = top_k_preds.indices[..., predicted_idx]
elif mode == "categorical":
prediction = torch.distributions.Categorical(logits=predictions[..., -1, :]).sample()
else:
raise ValueError("Invalid mode or top k passed in")
# if we reached the end token, immediately output
if prediction == end_token:
return inp.squeeze()
# else cat and move to the next prediction
inp = torch.cat(
[inp, prediction.view(1, 1)],
dim=-1
)
except (KeyboardInterrupt, RuntimeError):
# generation takes a long time, interrupt in between to save whatever has been generated until now
# RuntimeError is in case the model generates more tokens that there are absolute positional encodings for
pass
# extra batch dimension needs to be gotten rid of, so squeeze
return inp.squeeze()
def audiate(token_ids, save_path="gneurshk.mid", tempo=512820, verbose=False):
"""
Turn a list of token_ids generated by the model (or simply translated from a midi file to the event vocabulary)
into a midi file and save it. It was also planned to convert the generated file into .wav and/or .flac files,
however the overhead of getting it to work with ambiguous paths of soundfonts is tedious, and so the conversion
of generated midi files to .wav or .flac files has been (for now at least) left to the user.
Args:
token_ids (torch.Tensor): one-dimensional tensor of token_ids generated by a MusicTransformer
save_path (str): path at which to save the midi file
tempo (int): approximate tempo in µs / beat of the generated midi file; default: 512820 (the tempo of all midi
files in the MAESTRO dataset
verbose (bool): flag for verbose output; default: False
Returns:
Nothing, but saves the generated tokens in a midi file at save_path
"""
# set file to a midi file
if save_path.endswith(".midi"):
save_path = save_path[:-1]
elif save_path.endswith(".mid"):
pass
else:
save_path += ".mid"
# create and save the midi file
print(f"Saving midi file at {save_path}...") if verbose else None
mid = list_parser(index_list=token_ids, fname=save_path[:-4], tempo=tempo)
mid.save(save_path)
""" save other file formats
if save_flac:
flac_path = save_path[:-4] + ".flac"
print(f"Saving flac file at {flac_path}...") if verbose else None
fs = FluidSynth()
fs.midi_to_audio(save_path, flac_path)
if save_wav:
wav_path = save_path[:-4] + ".wav"
print(f"Saving wav file at {wav_path}...") if verbose else None
fs = FluidSynth()
fs.midi_to_audio(save_path, wav_path)
# useful for ipynbs
return Audio(wav_path)
"""
print("Done")
return
def generate(model_, inp, save_path="./bloop.mid", mode="categorical", temperature=1.0, k=None,
tempo=512820, verbose=False):
"""
Combine the above 2 functions into a single function for easy generation of audio files with a MusicTransformer,
i.e. greedy_decode followed by audiate
NOTE: this can take a long time, even on a GPU
Args:
model_: MusicTransformer model with which to generate audio
inp (list): list of midi events in the vocabulary for the model to continue; set simply to ["<start>"] for the
model to generate from scratch
save_path (str): path at which to save the midi file
mode (str): specify 'categorical' or 'argmax' decode sampling; default: categorical
temperature (float ~ 1.0): softmax temperature to make the model outputs more diverse (high temperature) or less
diverse (low temperature); default: 1.0
k (int): number of top k samples to categorically sample to get the predicted next token; default: None, i.e.,
all samples will be considered, not just the top k
tempo (int): approximate tempo in µs / beat of the generated midi file; default: 512820 (the tempo of all midi
files in the MAESTRO dataset
verbose (bool): flag for verbose output; default: False
Returns:
Nothing, but saves the audio generated by the model_ as a midi file at the specified save_path
"""
# greedy decode
print("Greedy decoding...") if verbose else None
start = time.time()
token_ids = greedy_decode(model=model_, inp=inp, mode=mode, temperature=temperature, k=k)
end = time.time()
print(f"Generated {len(token_ids)} tokens.", end=" ") if verbose else None
print(f"Time taken: {round(end - start, 2)} secs.") if verbose else None
# generate audio
return audiate(token_ids=token_ids, save_path=save_path, tempo=tempo, verbose=verbose)
if __name__ == "__main__":
from hparams import hparams
def check_positive(x):
if x is None:
return x
x = int(x)
if x <= 0:
raise argparse.ArgumentTypeError(f"{x} is not a positive integer")
return x
parser = argparse.ArgumentParser(
prog="generate.py",
description="Generate midi audio with a Music Transformer!"
)
parser.add_argument("path_to_model", help="string path to a .pt file at which has been saved a dictionary "
"containing the model state dict and hyperparameters", type=str)
parser.add_argument("save_path", help="path at which to save the generated midi file", type=str)
parser.add_argument("-c", "--compile", help="if true, model will be `torch.compile`d for potentially better "
"speed; default: false", action="store_true")
parser.add_argument("-m", "--mode", help="specify 'categorical' or 'argmax' mode of decode sampling", type=str)
parser.add_argument("-k", "--top-k", help="top k samples to consider while decode sampling; default: all",
type=check_positive)
parser.add_argument("-t", "--temperature",
help="temperature for decode sampling; lower temperature, more sure the sampling, "
"higher temperature, more diverse the output; default: 1.0 (categorical sample of true "
"model output)",
type=float)
parser.add_argument("-tm", "--tempo", help="approximate tempo of generated sample in BMP", type=check_positive)
parser.add_argument("-i", "--midi-prompt", help="if specified, the program will "
"generate music that continues the input midi file", type=str)
parser.add_argument("-it", "--midi-prompt-tokens", help="number of tokens to sample "
"from the midi-prompt input as a prefix to continue, if it has been specified", type=int)
parser.add_argument("-v", "--verbose", help="verbose output flag", action="store_true")
args = parser.parse_args()
# fix arguments
temperature_ = float(args.temperature) if args.temperature else 1.0
mode_ = args.mode if args.mode else "categorical"
k_ = int(args.top_k) if args.top_k else None
tempo_ = int(60 * 1e6 / int(args.tempo)) if args.tempo else 512820
if args.midi_prompt:
midi_parser_output = midi_parser(args.midi_prompt)
tempo_ = midi_parser_output[2]
midi_input = (midi_parser_output[1])[0:args.midi_prompt_tokens] if args.midi_prompt_tokens else midi_parser_output[1]
else:
midi_input = ["<start>"]
music_transformer = load_model(args.path_to_model, args.compile)
generate(model_=music_transformer, inp=midi_input, save_path=args.save_path,
temperature=temperature_, mode=mode_, k=k_, tempo=tempo_, verbose=args.verbose)