\n",
+ "IFU support is a relatively recent addition, and efforts are still in progress to refine and improve the fidelity of IFU mode simulations. \n",
+ "
\n",
+ "\n",
+ "\n",
+ "## Selecting IFU mode simulations\n",
+ "\n",
+ "These instruments have a `mode` attribute, which can be set to either 'IFU' or 'imaging'. Selecting IFU mode has the following effects:\n",
+ "\n",
+ " - The normal `filter` attribute for selecting spectral bandpass is superceded by a `band` attribute for selected IFU bands, the specific details of which differ for NIRSpec and MIRI. A `get_IFU_wavelengths()` function is added, which allows looking up the wavelength range for each band. \n",
+ " - The PSF simulation gets an added step for adding \"IFU broadening\" effects, which are empirical models for slightly broadening/blurring the simulated PSF to better match the observed PSF FWHMs. Physically this is a simplified model for optical blurring effects due to imperfect wavefront quality in the IFU image slicer optics, for example.\n",
+ " - For NIRSpec IFU simulations only, the PSF output is rotated by an additional 90 degrees to match the orientation of JWST pipeline output dataproducts created with the \"orient='IFUalign'\" option in the Cube Build step."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "4eac3034-b525-4576-b3c8-ddfd02d7a7b7",
+ "metadata": {},
+ "source": [
+ "Note there are *three options* for computing PSFs in IFU mode. \n",
+ "\n",
+ "1. If you only need one wavelength, use regular `calc_psf()` with the `monochromatic` keyword to specify a wavelength.\n",
+ "2. If you want a datacube at all wavelengths, use `calc_datacube()` with a list or array of wavelengths. This is the recommended path for many typical use cases. \n",
+ "3. If you want a datacube at all wavelengths, you can also use `calc_datacube_fast()` which achieves a much-faster calculation runtime by making a simplifying assumption in the optical calculation, and currently by not including the detector effects or distortion modeling steps.\n",
+ " \n",
+ " * Specifically, it assumes that the wavefront optical path difference in the IFU exit pupil is independent of wavelength. This assumption is reasonably true for both MIRI and NIRSpec IFU modes within the current level of fidelity."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "id": "7ce1366f-dcc8-47b7-9e73-f0ebbee3f1ba",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "**WARNING**: LOCAL JWST PRD VERSION PRDOPSSOC-065 DOESN'T MATCH THE CURRENT ONLINE VERSION PRDOPSSOC-067\n",
+ "Please consider updating pysiaf, e.g. pip install --upgrade pysiaf or conda update pysiaf\n"
+ ]
+ }
+ ],
+ "source": [
+ "%matplotlib inline\n",
+ "import webbpsf\n",
+ "import astropy.units as u"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "e25e70a8-7a8b-456f-9719-e52951207bac",
+ "metadata": {},
+ "source": [
+ "## NIRSpec IFU example\n",
+ "\n",
+ "For NIRSpec, the `band` attribute is derived from the `prism` and `disperser` elements. "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "id": "b3ec32d8-5ede-46fb-8f51-da8c06039fbe",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Band is PRISM/CLEAR\n"
+ ]
+ }
+ ],
+ "source": [
+ "nrs = webbpsf.NIRSpec()\n",
+ "nrs.mode = 'IFU'\n",
+ "\n",
+ "nrs.disperser = 'PRISM'\n",
+ "nrs.filter = 'CLEAR'\n",
+ "print(\"Band is\", nrs.band)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "d950963b-b4df-42ff-8729-04ad44e17889",
+ "metadata": {},
+ "source": [
+ "The wavelength sampling can be obtained using the `get_IFU_wavelengths()` function. By default this returns the same wavelength sampling as the pipeline uses. But if desired you can also specify some other number of wavelengths `nlambda`, for instance to reduce simulation runtimes when the full spectral resolution is not needed. "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "id": "e68eb5e3-229f-4bcf-a8a0-5133788ba767",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "PRISM/CLEAR default wavelength sampling uses 940 wavelengths\n"
+ ]
+ },
+ {
+ "data": {
+ "text/latex": [
+ "$[0.6,~0.605,~0.61,~\\dots,~5.285,~5.29,~5.295] \\; \\mathrm{\\mu m}$"
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 3,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "allwaves = nrs.get_IFU_wavelengths()\n",
+ "print(f\"{nrs.band} default wavelength sampling uses {len(allwaves)} wavelengths\")\n",
+ "allwaves"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "id": "7417534b-6550-4830-9f23-a590aad7357f",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# let's get a subset for a faster PSF sim runtime\n",
+ "waves = nrs.get_IFU_wavelengths(nlambda=50)\n",
+ "\n",
+ "# convert waves from microns to meters\n",
+ "# (this is a work around for a current issue with the poppy library upstream)\n",
+ "waves = waves.to_value(u.meter)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "7f5180f4-2890-47db-aea7-b89c6d176130",
+ "metadata": {},
+ "source": [
+ "Compute a datacube:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "id": "212dcbf1-4fef-43a3-8675-a7dbad84ace1",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "cube = nrs.calc_datacube(waves)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "8662db59-3a15-4a6d-b3de-341a4189a05a",
+ "metadata": {},
+ "source": [
+ "The output FITS file has the same extensions as a regular PSF calculation, but each extension contains a 3D datacube rather than a 2D image: "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "id": "58429d9f-621b-4bcd-96c1-917abf609318",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Filename: (No file associated with this HDUList)\n",
+ "No. Name Ver Type Cards Dimensions Format\n",
+ " 0 OVERSAMP 1 PrimaryHDU 1288 (192, 192, 50) float64 \n",
+ " 1 DET_SAMP 1 ImageHDU 1290 (48, 48, 50) float64 \n",
+ " 2 OVERDIST 1 ImageHDU 1343 (192, 192, 50) float64 \n",
+ " 3 DET_DIST 1 ImageHDU 1344 (48, 48, 50) float64 \n"
+ ]
+ }
+ ],
+ "source": [
+ "cube.info()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "dd3b4280-6ec4-4f62-b6ea-8108780dfe20",
+ "metadata": {},
+ "source": [
+ "The `calc_datacube_fast` routine does a simplified calculation, much faster: "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "id": "228264f6-0f16-489d-99a7-4dadbea39bc7",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "quickcube = nrs.calc_datacube_fast(waves)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "7b12112c-d610-4579-8072-f644c01d4a83",
+ "metadata": {},
+ "source": [
+ "Note that in this case, the output FITS file only contains the first oversampled extension:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "id": "de797cb5-3b4f-4a4a-8152-59e68f7bc78f",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Filename: (No file associated with this HDUList)\n",
+ "No. Name Ver Type Cards Dimensions Format\n",
+ " 0 OVERSAMP 1 PrimaryHDU 159 (192, 192, 50) float64 \n"
+ ]
+ }
+ ],
+ "source": [
+ "quickcube.info()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "e550c2b5-20fa-493d-ae39-317f7c5a4cdf",
+ "metadata": {},
+ "source": [
+ "The display_psf function works with datacubes, but you have to specify which slice of the cube to display. "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "id": "2ffd3c45-4d4c-4a0f-9a41-6d28e7618eac",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAh0AAAHHCAYAAAAbLeozAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABwb0lEQVR4nO3deVzU1f4/8NewgyD7IiqKoibhFpRbptbNNVMz0zQ1u9nPxFzIFivXa5nllmWaZnq7mdpNLfteMy1N09AbKJo3KzONFBBRAUVlm8/vD2J0hDlvmI1hfD0fDx4PmDOf89mHM+dz3u+j0zRNAxEREZGNudT0BhAREdGtgY0OIiIisgs2OoiIiMgu2OggIiIiu2Cjg4iIiOyCjQ4iIiKyCzY6iIiIyC7Y6CAiIiK7YKODiIiI7IKNDiIiIrILNjqIiIjILm75RseaNWug0+ng5eWFP/74o0J5t27dEBcXZ/Te8h83NzfUq1cPQ4cOxfHjxyut/8CBAxg4cCCioqLg6emJ8PBwdOzYEc8++2yVty0lJaXCa5X9TJkyBQAwc+ZM6HQ65OTkVFpvXFwcunXrJq7f2qTtspfyY3jq1Cnla7a2c+dOPPHEE7jttttQp04d1K9fH/3790dqamql7798+TImTZqEyMhIeHl5oW3btli/fr1F23Dt2jW4ubnBz88PzzzzjEV13ay6+3ezb7/91uS1vn//fsP7Ll26hOeffx49evRAaGgodDodZs6cabLeQ4cOYcCAAYiMjISPjw9uu+02zJ49G1euXLF0l0U1cZ0RORK3mt4AR1FYWIhXXnkF//rXv8T3rl69GrfddhuuXbuGffv24dVXX8WuXbvw888/IzAw0PC+//znP3jwwQfRrVs3vPHGG6hXrx4yMzORkpKC9evXY8GCBWZvb/k23CgyMtLs+m51ffv2RXJyMurVq2e3dS5btgznz5/HxIkTERsbi3PnzmHBggXo0KEDvvrqK9x7771G73/ooYfwww8/4PXXX0fz5s3x8ccf49FHH4Ver8ewYcPM2gadToedO3di1qxZeOedd/DMM8+gefPm1ti9au+fKa+99hq6d+9u9Fr5FwEAOH/+PFasWIE2bdpgwIABeP/9903W9dNPP6FTp05o0aIFFi9ejJCQEOzZswezZ89GamoqPv/8c/N2topq4jojcijaLW716tUaAK1Xr16ai4uLlpaWZlTetWtX7fbbbzd67w8//GD0nlmzZmkAtA8++MDo9XvuuUdr2rSpVlxcXGG9paWlVd62G9dnahtuNGPGDA2Adu7cuUrLb7/9dq1r167i+q1N2i57KT+GJ0+erNHtOHv2bIXXLl26pIWHh2v33Xef0ev/+c9/NADaxx9/bPT6/fffr0VGRmolJSUWbcu2bdsqrd8S1dm/yuzatUsDoP373/9Wvk+v12t6vV7TNE07d+6cBkCbMWNGpe99+eWXNQDab7/9ZvT6U089pQHQLly4IG6XoygoKKjpTSCqtlv+8Uq5559/HsHBwXjhhReqvWxCQgIA4OzZs0avnz9/HiEhIXBzq9ih5OJSOw79zz//jEcffRTh4eHw9PREVFQURo4cicLCQgDA448/jsaNG1dYrvxRSmX+/PNPPPTQQ6hbty78/f3x2GOP4dy5c0bvOX78OIYNG4awsDB4enqiZcuWWLp0aZW2+dy5c3jqqafQsGFDeHp6IjQ0FJ07d8bXX39tchlT3d7S/luyrWFhYRVe8/X1RWxsLP7880+j1zdv3gxfX18MHjzY6PXRo0cjIyMDBw4cENenUt5rlpaWZlE9N6rO/lmi/JFLVbi7uwMA/P39jV4PCAiAi4sLPDw8lMuXX9dHjhzB4MGD4e/vj6CgICQlJaGkpAS//PILevXqBT8/PzRu3BhvvPGG0fLmXmfl6z148CAefvhhBAYGomnTpobl9+7di/vuuw9+fn7w8fFBp06d8J///KfSbf/f//6HRx99FP7+/ggPD8cTTzyBvLy8Kh0/IkvVjv98duDn54dXXnkFX331FXbu3FmtZU+ePAkAFbqlO3bsiAMHDmDChAk4cOAAiouLrba9paWlKCkpMfqxtsOHD+POO+/E/v37MXv2bHz55ZeYO3cuCgsLUVRUZHa9AwcORExMDD799FPMnDkTn332GXr27Gk4Pj/99BPuvPNOHD16FAsWLMD//d//oW/fvpgwYQJmzZol1j9ixAh89tlnmD59OrZv3473338ff/vb33D+/PlqbWdV9t/Sbb1ZXl4eDh48iNtvv93o9aNHj6Jly5YVGrCtW7c2lFti3rx5ACpvdGiaVuFaM/UjMbV/KomJiXBzc0PdunXRs2dP7N27t8rL3mzUqFEICAjA008/jd9//x2XLl3C//3f/+G9995DYmIi6tSpU6V6HnnkEbRp0wYbN27EmDFjsGjRIkyePBkDBgxA3759sXnzZtx777144YUXsGnTJmVd1bnPHnroIcTExODf//43li9fDgDYvXs37r33XuTl5WHVqlVYt24d/Pz80K9fP2zYsKHC+gYNGoTmzZtj48aNePHFF/Hxxx9j8uTJVTyCRBaq6a6Wmnbj44rCwkKtSZMmWkJCgqG7trLHK/v379eKi4u1S5cuadu2bdMiIiK0e+65p8JjlJycHO3uu+/WAGgANHd3d61Tp07a3LlztUuXLlVr225+rbKf8vVb6/HKvffeqwUEBGjZ2dkm3zNq1CitUaNGFV4v34bKXps8ebLR62vXrtUAaB999JGmaZrWs2dPrUGDBlpeXp7R+8aPH695eXmJXeC+vr7apEmTTJZX9nilsteqsv+WbuvNhg8frrm5uWkpKSlGrzdr1kzr2bNnhfdnZGRoALTXXnutWuu50VdffaUB0AIDA7XQ0NAK5eWPOaryIz2yMrV/lTl48KA2ceJEbfPmzdqePXu0Dz74QGvZsqXm6uqqbdu2rdJlpMcrmqZpx44d02677Taj7Z4wYYLhnlcpv4YXLFhg9Hrbtm01ANqmTZsMrxUXF2uhoaHaQw89ZHjN3OusfL3Tp0+vUNahQwctLCzM6DOlpKREi4uL0xo0aGDYr/I63njjDaPlx40bp3l5eVVp/4ksxZ6OG3h4eGDOnDlISUnBJ598YvJ9HTp0gLu7O/z8/NCrVy8EBgbi888/r/AtNDg4GN99951h8F///v3x66+/YurUqWjVqpVFURwffvghfvjhB6Ofyh7jmOvKlSvYvXs3HnnkEYSGhlqtXgAYPny40d+PPPII3NzcsGvXLly7dg3ffPMNBg4cCB8fH6Nv0X369MG1a9eMIhcqc9ddd2HNmjWYM2cO9u/fb1YPU1X23xrbeqNp06Zh7dq1WLRoEeLj4yuUqx4hVPXxws1yc3PxxBNPoH///hg3bhzOnTuHjIwMo/fEx8dXuNZM/agGM0v7d7N27dph8eLFGDBgALp06YLRo0fj+++/R7169fD888+btb+nTp1Cv379EBwcjE8//RS7d+/GG2+8gTVr1uDJJ5+scj0PPPCA0d8tW7aETqdD7969Da+5ubkhJiam0qi4ctW9zwYNGmT0d0FBAQ4cOICHH34Yvr6+htddXV0xYsQInD59Gr/88ovRMg8++KDR361bt8a1a9eQnZ0trp/IUoxeucnQoUMxf/58vPzyy3jooYcqfc+HH36Ili1b4tKlS9iwYQPee+89PProo/jyyy8rfX9CQoJh3EdxcTFeeOEFLFq0CG+88UaFZ75V1bJlS0OdNytvfJSWllZaXlJSYni2bcrFixdRWlqKBg0amLV9KhEREUZ/u7m5ITg4GOfPn8f58+dRUlKCt99+G2+//Xaly0uNtQ0bNmDOnDl4//33MW3aNPj6+mLgwIF44403KqzblKrsvzW2tdysWbMwZ84cvPrqqxg/fnyF8vLjc7MLFy4AAIKCgqq0npslJiaiuLgYK1euxJ49ewCUPWK5sfHg6+uLtm3bVqk+Uw1faf+qKiAgAA888ACWL1+Oq1evwtvbu1rLv/jii8jPz0daWprhUco999yDkJAQPPHEExg5ciS6du0q1nPz8fbw8ICPjw+8vLwqvJ6fn2+ynureZzdHvVy8eBGaplUaDVN+Dm++boKDg43+9vT0BABcvXq1SttAZAk2Om6i0+kwb9483H///VixYkWl77nxH3737t1RWlqK999/H59++ikefvhhZf3u7u6YMWMGFi1aZPFzeFPCw8MBAGfOnDH8Xk7TNGRmZppssJQLCgqCq6srTp8+rXyfl5eX0aDKcqp/tllZWahfv77h75KSEpw/fx7BwcEIDAw0fEtLTEysdPno6GjlNoWEhGDx4sVYvHgx0tPTsWXLFrz44ovIzs7Gtm3blMuWq8r+W2NbgbJ/yDNnzsTMmTPx0ksvVfqeVq1aYd26dSgpKTH6x/7jjz8CMA4hrapPP/0UH3/8Mb744guEhobijjvuAFDW6OjTp4/hfbt3764QsmrKyZMnKwwsrsr+VYemaQDM691JS0tDbGxshbEbd955J4CysTFVaXRYS1Xvs3I373NgYCBcXFyQmZlZ4b3lPVYhISGWbyiRlbDRUYm//e1vuP/++zF79mw0bNhQfP8bb7yBjRs3Yvr06XjooYcMkSmZmZmVfgM5duwYANvl1bj33nuh0+mwYcMGwz+Sctu2bUN+fj7+9re/Kevw9vZG165d8e9//xuvvvqqyQ+uxo0bIzs7G2fPnjU0cIqKivDVV1+ZrHvt2rVG3euffPIJSkpK0K1bN/j4+KB79+44dOgQWrduLUYTSKKiojB+/Hh888032LdvX5WXq8r+W2Nb//GPf2DmzJl45ZVXMGPGDJPvGzhwIFauXImNGzdiyJAhhtf/+c9/IjIyEu3bt6/WerOysjB27Fg89dRThkcF0dHRCAgIwKFDh4zeW/54pSpuvqarun9VdfHiRfzf//0f2rZtW6FXoarbd/ToUVy+fNnocURycjIA2KRnT6Wq95kpderUQfv27bFp0ybMnz/f0POj1+vx0UcfoUGDBlbLu0JkDWx0mDBv3jzEx8cjOztbHGkfGBiIqVOn4vnnn8fHH3+Mxx57DADQs2dPNGjQAP369cNtt90GvV6PtLQ0LFiwAL6+vpg4caJNtr1p06YYP3483nzzTeTm5qJPnz7w9vY2jC1JSEioUjKphQsX4u6770b79u3x4osvIiYmBmfPnsWWLVvw3nvvwc/PD0OGDMH06dMxdOhQPPfcc7h27RqWLFli8tEOAGzatAlubm64//778b///Q/Tpk1DmzZt8MgjjwAA3nrrLdx9993o0qULnn76aTRu3BiXLl3Cb7/9hi+++EIZXZSXl4fu3btj2LBhuO222+Dn54cffvgB27ZtM/m4zJL9t2RbFyxYgOnTp6NXr17o27dvhfEfHTp0MPzeu3dv3H///Xj66aeRn5+PmJgYrFu3Dtu2bcNHH30EV1dXo2V1Oh26du2Kb7/9ttJ1jxkzBoGBgVi4cKHR6+3atasQweLn5yf2jFm6f7t378Z9992H6dOnY/r06QCAYcOGISoqCgkJCQgJCcHx48exYMECnD17FmvWrDGq68svv0RBQQEuXboEoCyq6NNPPwUA9OnTBz4+PgCASZMmYcCAAbj//vsxefJkhISEYP/+/Zg7dy5iY2ONxmTYS1WuM5W5c+fi/vvvR/fu3TFlyhR4eHjg3XffxdGjR7Fu3Tqzx/sQ2UQND2StcapkW8OGDdMAiMnBNE3Trl69qkVFRWnNmjUzJGrasGGDNmzYMK1Zs2aar6+v5u7urkVFRWkjRozQfvrpJ7O2rSrJwTStLGHSsmXLtISEBM3Hx0fz8PDQmjVrpr3wwgtVipwp99NPP2mDBw/WgoODNQ8PDy0qKkp7/PHHtWvXrhnes3XrVq1t27aat7e31qRJE+2dd95RRq+kpqZq/fr103x9fTU/Pz/t0UcfrZBI6uTJk9oTTzyh1a9fX3N3d9dCQ0O1Tp06aXPmzFFu77Vr17SxY8dqrVu31urWrat5e3trLVq00GbMmGFIplTV6JWq7r+529q1a1dlJMjNLl26pE2YMEGLiIjQPDw8tNatW2vr1q2r9H0AtKFDh1a63pUrV2qurq5acnJyhbKkpCRNp9Np+fn5ym2viursX3mEzI1RJ3PnztXatm2r+fv7a66urlpoaKg2cOBA7b///W+FdTVq1KjKETU7d+7UevTooUVERGje3t5a8+bNtWeffVbLyckR98lUZNioUaO0OnXqVHoMyj8/NM3860yKSPvuu++0e++9V6tTp47m7e2tdejQQfviiy+qtO2OkiyPbg06TfvrASkROYWtW7figQcewOHDh9GqVaua3hwiIgOGzBI5mV27dmHo0KFscBCRw2FPBxEREdkFezqIiIjILtjoICIissC7776L6OhoeHl5IT4+Ht99953J92ZmZmLYsGFo0aIFXFxcMGnSJPttqANgo4OIiMhMGzZswKRJk/Dyyy/j0KFD6NKlC3r37o309PRK319YWIjQ0FC8/PLLaNOmjZ23tuY57JgOvV5vyGrp4+PDWHMiolpG0zRcuXIFQFlm1PLEibZah7VU539O+/btcccdd2DZsmWG11q2bIkBAwZg7ty5ymW7deuGtm3bYvHixZZsbq3isMnBcnJyKqTwJiKi2uns2bMICwuzer1Xrlwxyi5rDRkZGUap8j09PQ1z1NyoqKgIqampePHFF41e79GjB77//nurbpOz4OMVIiKiG0RGRsLf39/wY6rHIicnB6WlpRW+IIeHhyMrK8sem1rrOGxPR3naYgDoAsDVxPtMJ9sGYoR1SP0o6nlYgYuKMtOTWZcxtT/lzJsztMwFoVw1gbU0m4U0E430faNIUaY6l1WhykohTRoufTz8JpSr9kudxBooEMp/V5RJ3xqkdUud0rmKMukaviSUFyvKpP2SngmrPth8FGUAoLdw3ZcVZdK9KX0mqc5nxVmejEmfZ9J1qDpupmasKQawpHx5H+nIW+7s2bMVJvOrqoKCAkPjobKeDpWbH8VomsYhASY4bKPjxhPmCvkDrjLSTSZNzyUtryqXDqy0P9K6VSxZt6XbJZWrPrAt7XZTfSxIjSn1R4pl+yVdZ6oGC6A+n9Ixk64FW14rUrmqkWlpo8OS7Zb+VUjrVm27tF+WHFPpXErXsCXXSlWmOrTHP+E63p6o4y3dzSboSwy/1q1bt0qNl5CQELi6ulbo1cjOzubwABP4eIWIiJyDvsSyn7/Ex8cjNjYWS5cuVa7Ow8MD8fHx2LFjh9HrO3bsQKdOnWyyi7Wdw/Z0EBERVctNjYdqL/uX1NTUKj+mSUpKwogRI5CQkICOHTtixYoVSE9Px9ixYwEAU6dOxZkzZ/Dhhx8alimfyfny5cs4d+4c0tLS4OHhgdjYWPO2vRZho4OIiMhMQ4YMwfnz5zF79mxkZmYiLi4OW7duRaNGjQCUJQO7OWdHu3btDL+npqbi448/RqNGjXDq1Cl7bnqNYKODiIicg5V6OuLj4+Hi4oLExEQkJiaKi44bNw7jxo2rtGzNmjUVXnPQ9Fh2wUYHERE5hxp4vELVUysaHSWQR4xXRgpPk8IJpbBVVYiadGBPCeWqsNaqjBRXUY2pliIpvIVyaXy6JaHAZ4RyVQizFDLrL5RLy+cpyqTrTDpmqm2Toh2ka0X6eFbVL41CDxDKVdea6ngCcmi2KlJDOmaq6wiQI6FUxyVCWDZAKA9UlEnXmXSuVSHMgDoU+LyZddKtp1Y0OoiIiET6Ugt6OizNFERVwZBZIiJyDnYOmaXqY08HERHRDTimw3bY6CAiIudgpYGkZDtsdBARkXNgo8PhcUwHERHRDTimw3ZqRU/HBZhuHQUolrsm1KsKAQOAukK5KmxPCo2TwvZOKsqk0Dhpv1Thx1JIrLTd0gWlCuGUQkelY6p6Aittl7TfqlBFQB3+Kc22KoVoqr4ZSCGx0n5JIdKqYyqdL0vWLW2XdD5Ux0UVjl4V0iy0loTrSvETqplgpTlcpXVL30BVx9RUWLd0Hq2OeTocXq1odBAREYn4eMXhsdFBRETOQbMgT4fGPB32wDEdREREZBdsdBARkXNgcjCHx8crRETkHDiQ1OGxp4OIiIjsgj0dRETkHBi94vBqRaPDD3KMeWWkGPFcoVxap6eiTJp6u55QrnJBKFfl4ZBI47dNTWFdTsohosrdIB1vKQ+BKn9ClrCspflH6ivKpDwc+UK56pxcEZaVOoil61R1rQULy0pTwJ9RlEnnQ8qVoSqX/rVI65aOqepzQbo3pdwnqmMu5bEpFMqDhHLVtWIqN0ltzdNBtsPHK0RERGQXbHQQEZFzYPSKw6sVj1eIiIhEeguSg+mvP8hk9IrtsKeDiIiI7II9HURE5Bw4kNThsdFBRETOgY0Oh8dGBxEROQc2OhxerWh0BMD0hqpi4qWcE1JMfJ5QflZRpspHAcix/qq8D5KrQrnqpEvHTIq7l27bXEWZqVj/ctIxCVGUSeda2m9pv1R5IVTXKADUFcpVeTykfBXFQrk0qEuVa0M6X9IxVW2bdL6k/CSqfBhSLhnpQ1HKsaPKZyFtt5Q3JUBRZsnxBuQ8OIGKMlP5e+yep4McHgeSEhGRc2DIrMOzaU/H3LlzsWnTJvz888/w9vZGp06dMG/ePLRo0cKWqyUiolsRJ3xzeDbt6di9ezcSExOxf/9+7NixAyUlJejRowcKCgpsuVoiIiJyQDbt6di2bZvR36tXr0ZYWBhSU1Nxzz332HLVRER0q9EsSA6mSaNiyBrsOpA0L69saGZQUOVTCxUWFqKwsGxaIvaGEBFRtehLAL0504OC0St2YreBpJqmISkpCXfffTfi4uIqfc/cuXPh7+8Pf39/REZG2mvTiIiIyA7s1ugYP348jhw5gnXr1pl8z9SpU5GXl4e8vDxkZGTYa9OIiMgZWCl6hWzHLo9XnnnmGWzZsgV79uxBgwYNTL7P09MTnp5lWQ1cXa93kRXDdD4CVT4MaeyxFLfuIZSbik0H5NwLUt2qeH0pX4XUksxWlFn6VPOiUK7ab+mYhArlqk5VqcPVzA7ZKi0v5SqwZW4GKd9FoVAu5QGxpO4IRZmUz0Kiugek81H5w9/rgoVyVY4QibRu1bVyTlhWujelz0OVyzao0yx8vOLwbNro0DQNzzzzDDZv3oxvv/0W0dHRtlwdEREROTCbNjoSExPx8ccf4/PPP4efnx+ysrIAAP7+/vD2lnJ2EhERVQN7OhyeTRsdy5YtAwB069bN6PXVq1fj8ccft+WqiYjoVqO3IGRWz5BZe7D54xUiIiK70JcAejPjI25Kg+7i4oLExEQkJiZaaeMIqCUTvhEREdkL06DbDhsdRETkHKzU00G2UysaHXqYDv2TwsBUpHBCaYp41XClPyxYFgAaKsr8hWWlk6q6JdOFZaXbUpruXAoJVFFNsw6oj6l0rqVhzdLHmOpaka4jaUrxRoqyXGFZS0NPVdOZS+cyVyhX5RyWHsxK30FV16EUyiuFxErXoWq/TIWWlpPCxi0J7ZbCn68J5arjlmvi9ZoJmWWjw5FxansiIiKyi1rR00FERCRiT4fDY6ODiIicAxsdDo+PV4iIiMgu2NNBRETOQbMgOZjG5GD2wEYHERE5B30JoJdi1RTLks3x8QoRERHZRa3v6bikKJM6y6Q8A1JMvKrFJuUCOGPBuqW5ekMsqFua9jtTKPcUylU5RqQWsJRHQJWzpa6wrHQtSDdKlqLsvLCsn1Cuyjkh5fiQrkOpXFV/vrCsdL4uKMqke0/KZ6E6ZtI1KuWzkHKIqL4vS9eRdJ2q9kva7iihXOofUK3b1OewJXlFzMKeDodX6xsdREREANjoqAXY6CAiIufARofD45gOIiIiC7z77ruIjo6Gl5cX4uPj8d133ynfv3v3bsTHx8PLywtNmjTB8uXLjcr/97//YdCgQWjcuDF0Oh0WL15sw623LzY6iIjIOehLLPsxw4YNGzBp0iS8/PLLOHToELp06YLevXsjPb3ymaxOnjyJPn36oEuXLjh06BBeeuklTJgwARs3bjS858qVK2jSpAlef/11REREmLVdjoqPV4iIyDnoSy14vGJeno6FCxfi73//O5588kkAwOLFi/HVV19h2bJlmDt3boX3L1++HFFRUYbei5YtWyIlJQXz58/HoEGDAAB33nkn7rzzTgDAiy++aNZ2OSr2dBAREZmhqKgIqamp6NGjh9HrPXr0wPfff1/pMsnJyRXe37NnT6SkpKC42O7z8todezqIiMg56Evk2GHVsn/Jz89Haen1ng9PT094elYMts7JyUFpaSnCw8ONXg8PD0dWVuWB9FlZWZW+v6SkBDk5OahXr56ZO1A71IpGhxtMb6hqB6QndFL+BFVOCQBQPWkz97ovV/nTwDJSTglpu30VZVIsv5Sj4KpQror1l/JVeAnlqhwiUj4Kad0SVT4CKS9EHaFclZNClesCAHKFcuk6tSSni9TJrbp/pHtX6qJVbVuosGykUC4dM9V+NxCWlfKuqNYtXWeq+x6Qj2mGoizPxOt2jwexUqMjMtL4KpgxYwZmzpxpclGdzvisa5pW4TXp/ZW97oxqRaODiIjIXjIyMlCnzvWvA5X1cgBASEgIXF1dK/RqZGdnV+jNKBcREVHp+93c3BAcHGzhljs+jukgIiLnYKXolbp16xr9mGp0eHh4ID4+Hjt27DB6fceOHejUqVOly3Ts2LHC+7dv346EhAS4u6v6gp0DGx1EROQcrNToiI+PR2xsLJYuXSquMikpCe+//z4++OADHDt2DJMnT0Z6ejrGjh0LAJg6dSpGjhxpeP/YsWPxxx9/ICkpCceOHcMHH3yAVatWYcqUKYb3FBUVIS0tDWlpaSgqKsKZM2eQlpaG3377zYoHq2bw8QoREdENUlNTjR6vqAwZMgTnz5/H7NmzkZmZibi4OGzduhWNGjUCAGRmZhrl7IiOjsbWrVsxefJkLF26FJGRkViyZIkhXBYoe7zTrl07w9/z58/H/Pnz0bVrV3z77bfW2ckawkYHERE5BysNJK2ucePGYdy4cZWWrVmzpsJrXbt2xcGDB03W17hxY8PgUmfDxytEROQctFLzH61o10Nkq/N4haqnVvR0FMJ06JVq2I0UIiY1iKVy1dTdUnintwXr/lNYVpr2WxVSKyXclVqp0raplpeGUFkSEijlGpSmFPeWYmpNze0N+SaTvs+oguikADtLA/CuKMqk+yNQKFd1XkvXgiWh2dI1Lq27QChX3dtSbIIUhpyjKMsVlrXk8wxQh8xWnpFCvu+sTl8C6M3sIbghI2l1Hq9Q9bCng4iIiOyCjQ4iInIONRC9QtVTKx6vEBERifh4xeGxp4OIiIjsgj0dRETkHKzU00G2w54OIiJyDhzT4fDY00FERHQDjumwnVrR6LgE01Nsq6aplvJVSNNIq6b1lkj5EaSp1lXbpkgJUaVyVR4BKX+INC24dMxUsf5S56aUPyFIUSblILgolBcIB1WVy1A6ZtK1oMrNIOWrkDqapXtEVS7lb1TlgwHUeTyKhWUlAYoyabsuW1iuyrUhHW+JqSnkAeC8sKx0rUg5QtIVZabuXfvn6Si14PGKualMqTpqRaODiIhIpC8B9GaOGmCjwy44poOIiIjsgo0OIiJyDhxI6vD4eIWIiJyDlR6vcCCp7bDRQUREzoFjOhweH68QERGRXbCng4iInINWan6PhWZmqC1VS61odDSE6Q1VXV5SHg4pf4KUsyJXUSbFp0t5PFTx+JLfhXJVPH4DYdkQodxPKFfl8bA0P4KnokyVwwOQz5eUS0N1PqXrSMo/osoxIn28SvslPbVWHTcpr4N0zH0VZVeEZaX7o0BRJp0P6V+PtN+W5KaQcmmoyqXjLeXQkXKIqO4vU3XbP09HCaCXPl1NLctGhz3w8QoREdENGL1iO7Wip4OIiEhkpZ4ORq/YDhsdRETkHPh4xSJHjhyp8ntbt25t1jrY6CAiIiK0bdsWOp0OmolBteVlOp0OpaXmjdhho4OIiJwDezoscvLkSZuvg40OIiJyDmx0WKRRo0Y2XwejV4iIiKiCf/3rX+jcuTMiIyPxxx9/AAAWL16Mzz//3Ow6a0VPRxxMx5BfUCwntVvrCuWquHRAHa9/XljWkoS7luaUOKsok3KbqHIrAHIOhDChXEWVewFQ5ymQ9svS3A0qUn4E6VpQfTOQzkexheUlijJpWVvms/ASylX3tnRf5wrlUj4MVb4L6TqTqM63dI3nCuX5QrnqHjCVQ8f+eTr05n+4Mgu6kWXLlmH69OmYNGkSXn31VcMYjoCAACxevBj9+/c3q172dBARkXPQW/jzF+bpAN5++22sXLkSL7/8Mlxdr391SkhIwI8//mh2vbWip4OIiEh0U+Oh2sv+hXk6ygaVtmvXrsLrnp6eKCiQ+p1NY08HERERGYmOjkZaWlqF17/88kvExsaaXS97OoiIyDlYqaeDgOeeew6JiYm4du0aNE3Df//7X6xbtw5z587F+++/b3a9bHQQEZFzYKPDakaPHo2SkhI8//zzuHLlCoYNG4b69evjrbfewtChQ82ul40OIiIiqmDMmDEYM2YMcnJyoNfrERZmSfxhmVrR6AiG6TA3VdhejlDvJfM2x0AVGidN8S5NYa0ihUlKw59UA3lUIciAPP11PaFcFeoYKiwrhd+ppjuXwhyl6eXdhB3XLPiWVKqKS4X6Jr1NqFsa7mUq1LEq5VL4Z0OhXLVf0nUopTBSnS4p/FkKqZXuAVW5FEqfK5SrLjPpXJ4WyqX7S/WZZarM7p0H7OmwmmnTpmHmzJlwdXVFSEiI4fW8vDyMHTsW69atM6teDiQlIiLnoMH8cFkmJDXy4YcfonPnzjhx4oThtW+//RatWrXCqVOnzK6XjQ4iIiIycuTIETRu3Bht27bFypUr8dxzz6FHjx54/PHHsXfvXrPrrRWPV4iIiER8vGI1/v7+WL9+PV5++WX8v//3/+Dm5oYvv/wS9913n0X1sqeDiIicg5UyklKZt99+G4sWLcKjjz6KJk2aYMKECTh8+LBFdbLRQUREdAOmQQd69+6NWbNm4cMPP8TatWtx6NAh3HPPPejQoQPeeOMNs+vl4xUiInIOTINuNSUlJThy5AgiIyMBAN7e3li2bBkeeOABPPnkk3j++efNqtemPR179uxBv379EBkZCZ1Oh88++8yWqyMiolsZH69YzY4dOwwNjhv17dvXcSd8KygoQJs2bTB69GgMGjTI7HpU14OqLZor1CvlZhDSJyinkvYXlpVI04arSFOpq7ZbJywr5TaRcjcEK8qk/CNS+UVFmZSvQjpmnsLF4qXY8Xwh6YQqv4gkUCiPEMqvCeWZijJpKnXpHlDlfZCuI6lu1bcpKX+PNMW7lMdD9bmRISyruoYBdS4N6fNKunel3EKqc2LqOisB8LNQr1VxIKld3Ji3o7ps2ujo3bs3evfubctVEBERkRUEBQXh119/RUhICAIDA6HTmf4aeuGClMKvcg41pqOwsBCFhYUAYNHUuUREdAtiT4dFFi1aBD+/sj6vxYsX22QdDtXomDt3LmbNmlXTm0FERLURGx0WGTVqVKW/W5NDNTqmTp2KpKQkAGU9HZUNYiEiIiLbKy0txebNm3Hs2DHodDq0bNkS/fv3h5ub+U0Hh2p0eHp6wtOzbJiWq6s0tI+IiOgG7OmwmqNHj6J///7IyspCixYtAAC//vorQkNDsWXLFrRq1cqsepkcjIiInANDZq3mySefxO23347Tp0/j4MGDOHjwIP7880+0bt0aTz31lNn12rSn4/Lly/jtt98Mf588eRJpaWkICgpCVFSULVdNREREZjp8+DBSUlIQGHg9MD8wMBCvvvoq7rzzTrPrtWmjIyUlBd27dzf8XT5eY9SoUVizZk2V6wkE4GWirK5iOSmSWMr7IMXrq7qJPIRlpQOfqyhT5TcALMvTIcX6FwnlqrwOgDo3SqiwbD2hXLVfUo4CS3KyAIC34mIqEC6ky9JBVTB1X5SztCtTdY9IOUKka1yVn0Q6X9I1riqX7h9p3VK5aob0s8KyUs4W1fmQPnMChHJpedX9aSrWULqvrI6PV6ymRYsWOHv2LG6//Xaj17OzsxETE2N2vTZtdHTr1g2aproFiYiIrISNDqt57bXXMGHCBMycORMdOnQAAOzfvx+zZ8/GvHnzkJ9//dtU3bqqr//GHGogKREREdW8Bx54AADwyCOPGJKElXci9OvXz/C3TqdDaakqV64xDiQlIiLnoMH8QaQWdMq/++67iI6OhpeXF+Lj4/Hdd98p3797927Ex8fDy8sLTZo0wfLlyyu8Z+PGjYiNjYWnpydiY2OxefNmo3Jbz222a9cuw8/OnTuxc+fOSv/euXNnteplTwcRETmHGni8smHDBkyaNAnvvvsuOnfujPfeew+9e/fGTz/9VGnAxMmTJ9GnTx+MGTMGH330Efbt24dx48YhNDTUMEdZcnIyhgwZgn/84x8YOHAgNm/ejEceeQR79+5F+/btAVhvbjNTunbtavU6AUCnOeigi4KCAvj6lg2bWgnTA+ZUA5Wk8Xm36kBS1cRO0sAvKTm9dDGpYpakgaTSZHSWDEyUJhhrIMxyHajY+Bxhlq8/hAtV9VkoTegmdWVK51N13CwdSKoaVHleWDZAKFfdA9KMEWeEconqHjglLGvLgaSFQrm0vOoyVQ0kLf8efPnyZZtMF3/j/4rLg4A6Zn6VLigBfDeW/V6dbW3fvj3uuOMOLFu2zPBay5YtMWDAAMydO7fC+1944QVs2bIFx44dM7w2duxYHD58GMnJyQCAIUOGID8/H19++aXhPb169UJgYCDWrVtXoU6dTofNmzdjwIABVdrmmsTHK0RERDfIz883+imfE+xmRUVFSE1NRY8ePYxe79GjB77//vtKl0lOTq7w/p49eyIlJQXFxcXK95iqszap9Y9XVNNMhwnLSr1p0vTyqm9TUiijNOxG9a1e6oGp+pCeiqQLQuqNkL5Nqb7dSt8rIoPU5b6KHb8kfIW8LKy7VLgYvBXdR4Hh6mWL/lSXuytOip9wTEqFrqti8yaKrBKpx03VIyD1allSt9RT6C+US58bqnVLdUs9harL0NJwd+lzRdUTYmpZSz6LzGKlxys3T8ExY8YMzJw5s8IiOTk5KC0tRXi48U0eHh6OrKysSleTlZVV6ftLSkqQk5ODevXqmXyPqTprk1rf6CAiIgIATV/2Y+6y5TIyMower5RPz2HKzVPAl0d1VOf9N79e3TqtSdM0pKenIywsDN7e0sPn6uHjFSIiohvUrVvX6MdUoyMkJASurq4VeiCys7Mr9FSUi4iIqPT9bm5uCA4OVr7HVJ3WpmkamjVrhtOnT1u9bjY6iIjIKej1lv2Ui4+PR2xsLJYuXapcn4eHB+Lj47Fjxw6j13fs2IFOnTpVukzHjh0rvH/79u1ISEiAu7u78j2m6rQ2FxcXNGvWDOfPS0O6q4+PV4iIyClY6/FKampqlaNXkpKSMGLECCQkJKBjx45YsWIF0tPTMXbsWADA1KlTcebMGXz44YcAyiJV3nnnHSQlJWHMmDFITk7GqlWrjKJSJk6ciHvuuQfz5s1D//798fnnn+Prr7/G3r17De+x9dxmb7zxBp577jksW7YMcXFxFtdXjo0OIiIiMw0ZMgTnz5/H7NmzkZmZibi4OGzduhWNGjUCAGRmZiI9Pd3w/ujoaGzduhWTJ0/G0qVLERkZiSVLlhjl2ujUqRPWr1+PV155BdOmTUPTpk2xYcMGQ44OwHpzm5ny2GOP4cqVK2jTpg08PDwqjO24cMG8Uei1Pk+HahS7paPQpY4lW0av5CjKpPHLUt2qifCkVqh0TKXolWuKsibCslL0iioTr6XRK8FCEoOGLRR156qXPVuD0SvnhM8N1T0g5elQD71T58O4KCwr7LYyCkRImyLeP5ZEr6QrygB1fh5AHb2imkwRkKN2VPcmoI5eMXW+SgH88Nfv9sjTcaG3ZXk6gv5Ki9GiRQu4uLggMTERiYmJVtrS2uWf//ynsnzUqFFm1cueDiIicgo18XjFWZnbqJDUikbHHzDdylb1KEgtfykPh/TNQPVNT8ojIB141RhlqW7pVlHF60vBUVIWV+mY5yrKpKyh166oy1W9DUHCyTyfqS73FA6Mm2LHvYQTEiQklFF9iHr5qJeV5Ak9HQGKsrpC788VITGEqidEyrQq7bbq3paucen+Ei5DZS+l1BMorVvVGyHl2ZC2W+rhUZ1uUz2FnLi1djtx4gRWr16NEydO4K233kJYWBi2bduGhg0bVpjyvqoYvUJERE7BWtErVDYpXatWrXDgwAFs2rQJly+XNS2PHDmCGTNmmF0vGx1EROQU7B0y68xefPFFzJkzBzt27ICHx/V+ru7duxvmiDFHrXi8QkREJNE0C8Z03DACmGM6gB9//BEff/xxhddDQ0Mtyt/Bng4iIiIyEhAQgMzMioPdDh06hPr165tdLxsdRETkFMqjV8z9oeuGDRuGF154AVlZWdDpdNDr9di3bx+mTJmCkSNHml0vGx1EROQUOKbDel599VVERUWhfv36uHz5MmJjY3HPPfegU6dOeOWVV8yul2M6iIiIbsAxHYC7uzvWrl2L2bNn49ChQ9Dr9WjXrh2aNWtmUb21otFxFqbzP6jSL0gZ9qRLSsq+qYprF1IUKPMfAOr8I8HCsp5COtRLigMjbbeUp6OOn7pcUyTjyBbqLhROaJGUWEUhSJi8sUhIsHDhrOkyF6E/MaKxutxVkQPkWoF62YuK7QKAugHq8kDFJ4RO2K8i4YSq8j4IKUDEDLKqBLTSZSLlmhFSuiizuAqnS7z/VNsWICxbVyiXcoio8hKZypIs5f6wNk0PaGbO/s7HK5Vr2rQpmjQpyxet05l5cG/AxytEROQUmKfDulatWoW4uDh4eXnBy8sLcXFxeP/99y2qs1b0dBAREZH9TJs2DYsWLcIzzzyDjh07AgCSk5MxefJknDp1CnPmzDGrXjY6iIjIKVjr8Up8fPwtP+HbsmXLsHLlSjz66KOG1x588EG0bt0azzzzDBsdRER0a9PrAb2ZjY4bH69wIClQWlqKhISECq/Hx8ejpESYvlqBYzqIiMgpcEyH9Tz22GNYtmxZhddXrFiB4cOHm10vezqIiIioglWrVmH79u3o0KEDAGD//v34888/MXLkSCQlJRnet3DhwirXWSsaHa4wPeVzkGI5KfxMiCwVl1f14mmKMkCe8lm1bfWEXj9X4awWKUJPpQvCXapbiEdUhUJKIcpSh94VRThu/Rj1sqqp6QGgUNivM8cVdavmcAfgJZxPH0WsY6lqDncAxUIcpLcQ4qw6Lrnn1MuqwlYB9fmU7j1TIZrlVGGrwiETWRKKL3XYS9vmrSjLFZaVnjpIx1y17WEmXje/E95MFozpED+UbzFHjx7FHXfcAaBsinugbN6V0NBQHD161PC+6obR1opGBxERkcRaYzoI2LVrl03q5ZgOIiKiGzANuu2wp4OIiJyCtUJmGb1iO2x0EBGRU2AadMfHxytERERkF+zpICIip6DXzB8QqpdCDm8xBQUFNnnExJ4OIiJyCpresh+6Ljw8HE888QT27t1r1XprRU/HVZiO91bFrUstKml6bCkeP1QoV5HyDKjWXSzMjy1Nza26t6Sp66XpzN2FnBShwabLrgonxFvYODdFEhApD4eUr6KOkEREKlfxiRTeoLhLXYTp469dUZdLOUJUH8TStSCxJM+Nqbw9VaHKFQPI94D0uaDKTSGtWzhdyv2W/mdK08xbkhvFVN12z9NBVrNu3TqsWbMG9913Hxo1aoQnnngCI0eORGSk9IGlxp4OIiJyCkyDbj39+vXDxo0bkZGRgaeffhrr1q1Do0aN8MADD2DTpk1mz7/CRgcRETkFazU6mKfjuuDgYEyePBmHDx/GwoUL8fXXX+Phhx9GZGQkpk+fjitXpP45Y7Xi8QoREZFE08uP5lTLlmOejuuysrLw4YcfYvXq1UhPT8fDDz+Mv//978jIyMDrr7+O/fv3Y/v27VWuj40OIiIiMrJp0yasXr0aX331FWJjY5GYmIjHHnsMAQEBhve0bdsW7dq1q1a9bHQQEZFTsFZPBwGjR4/G0KFDsW/fPtx5552VvqdJkyZ4+eWXq1UvGx1EROQU9HrzJ4vlQFJjmZmZ8PHxUb7H29sbM2bMqFa9HEhKRERERvz8/JCdXTEm//z583B1NT9ovVb0dFyE6Q31UiwntagumLc5Bqoxu+r2oZxnQJXDIFdYVsoFoEiVIR6zUiFKykOVOAWAu+KE1QlQLyvllMg/b7os95x6WVWODwDwaSGUq/KASIlTvISjfs30V7CgCPWiIUJIfVGhutxTcT6layHIgq80lnZ1X1SU5UvrtrBclQ9DcYkCKMtJpKL6XJDybEh5OqS8RarTbep0Seu0Nj5esR5Nq/xIFhYWwsND+i9jWq1odBAREUn4eMVyS5YsAQDodDq8//778PW9ni6vtLQUe/bswW233WZ2/Wx0EBEREQBg0aJFAMp6OpYvX270KMXDwwONGzfG8uXLza6fjQ4iInIKfLxiuZMnTwIAunfvjk2bNiEwMNCq9XMgKREROQVmJLWeXbt2Wb3BAbCng4iIyMitmpE0KSkJ//jHP1CnTh0kJSUp37tw4UKz1sFGBxEROQVNM/8xiYlgjVvKoUOHUFxcbPjdFJ1OFUelxkYHERE5BU0P6M38f8hGR9kjlcp+t6Za0ejIgem8FkJaCKUCoVwa8CLFtatIeTz8FWXSPhcL5ap4fimu3lO4YvLy1OWXFOUNmqiXLRF2rPia6bIrl9TL+gaoy3081eVo3cd0WYt+wsKC41+aLHIt3aJctHmouuris+ryK4qkFlKOjxIhccQ1RaKbK8J1JP1fkU6XSq5QbkkeD0vzVqhyA0m5f1SfKYA65xGg/lwx9Vlp3uTn5tP0gMZGh03k5+dj586duO222ywKmeVAUiIiIjLyyCOP4J133gEAXL16FQkJCXjkkUfQqlUrbNy40ex62eggIiKnYK3oFQL27NmDLl26AAA2b94MTdOQm5uLJUuWYM6cOWbXy0YHERE5BU1v2Q9dl5eXh6CgIADAtm3bMGjQIPj4+KBv3744fvy42fWy0UFERERGGjZsiOTkZBQUFGDbtm3o0aMHAODixYvw8pJGAJlWKwaSEhERSfQWRK/oOZDUyKRJkzB8+HD4+vqiUaNG6NatG4Cyxy6tWrUyu142OoiIyCkwesV6xo0bh7vuugt//vkn7r//fri4lD0YadKkiUVjOmpFoyMXpp8DWRJaKkT8icurwvKkcFzpwKuiDaVQXalcNX22FOLmKs2fLVA9NtX/rl42vJ66PDDcdJkUbusfoi5HHeFJZKtHTZe1fkyoXOCiuFp+/1q9bIkqyBJwz1UvXqw4365CjGapcMjOKcJipctMuk5VE29L4bTSo33pc0EVFiuFrSqivgEAmYoy6ZhJz9Kl46I6pqbOh/kppMgRJCQkICEhwei1vn37WlRnrWh0EBERSfh4xXpKS0uxZs0afPPNN8jOzob+pvCenTt3mlUvGx1EROQU2OiwnokTJ2LNmjXo27cv4uLiLEp9fiM2OoiIiMjI+vXr8cknn6BPH0W2ZTPYJWT23XffRXR0NLy8vBAfH4/vvvvOHqslIqJbSE3l6aju/7jdu3cjPj4eXl5eaNKkCZYvX17hPRs3bkRsbCw8PT0RGxuLzZs3V3u9mzZtQs+ePRESEgKdToe0tLQq75OHhwdiYmKq/P6qsnmjY8OGDZg0aRJefvllHDp0CF26dEHv3r2Rnp5u61UTEdEtpCYaHdX9H3fy5En06dMHXbp0waFDh/DSSy9hwoQJRqnFk5OTMWTIEIwYMQKHDx/GiBEj8Mgjj+DAgQPVWm9BQQE6d+6M119/vdr79eyzz+Ktt96CZuWwHp1m7Rpv0r59e9xxxx1YtmyZ4bWWLVtiwIABmDt3rsnlCgoK4OvrCwCIhenWUWPFuiOEbcsVyqVR6mGKMmkkuTSKXVVeR1hWil5RTTYnBXFIk0pJVPd1kLCsLaNXGjZXl7u2FdrnA/5puszS6JWD75su+3KietkL6ugVnFYX55xRVK0KpYA8IVy6om7p/hH2CucUZTnCsqroLsCy6BXpw9aW0SvSZ470P1e17aaiV0oA/Puv3y9fvow6daRPr+q78X/FlwC8zRx6cFUDev/1e3W2tbr/41544QVs2bIFx44dM7w2duxYHD58GMnJyQCAIUOGID8/H19+eX2yx169eiEwMBDr1q2r9npPnTqF6OhoHDp0CG3btq3Sfg0cOBC7du1CUFAQbr/9dri7uxuVb9q0qUr13MymPR1FRUVITU01ZDIr16NHD3z//fcV3l9YWIj8/HzDDxERkb3d+H8oPz8fhYWVt6Cr+z8OKOvFuPn9PXv2REpKCoqLi5XvKa/TnPVWV0BAAAYOHIiuXbsiJCQE/v7+Rj/msulA0pycHJSWliI83PgraHh4OLKysiq8f+7cuZg1a1aF1yNg3jds6QGO1OKSpqFWfeORppdXxbwD6ph56duQtG5Vc07x5RMA0FQobyCUq76hSsfbVbha6yjugzp1hbqDhZUXCN8DC1TfrS109aLpMqknQ5i6PuM3dbmqt8JD+Mp/RfjeoOoIkb61S70NqtPpKywr9RRK+SxU17FUt3TvqnphLgjLKq4iAHJPo4qpddt9anuYn+TrxsUiIyONymbMmIGZM2dWWKa6/+MAICsrq9L3l5SUICcnB/Xq1TP5nvI6zVlvda1evdoq9dzMLtErN4faaJpWafjN1KlTkZSUBKCsy+zmE09ERGSKHvJjItWy5TIyMower3h6qpuaVf0fp3r/za9Xpc7qrre6SkpK8O233+LEiRMYNmwY/Pz8kJGRgbp16xoeaVWXTRsdISEhcHV1rdDyys7OrtBCA8pObPnJdZXSHRIREdlA3bp1qzSmo7r/4wAgIiKi0ve7ubkhODhY+Z7yOs1Zb3X98ccf6NWrF9LT01FYWIj7778ffn5+eOONN3Dt2rVKI26qwqZjOjw8PBAfH48dO3YYvb5jxw506tTJlqsmIqJbjN7Cn3Lx8fGIjY3F0qVLlesz539cx44dK7x/+/btSEhIMAzWNPWe8jrt8b914sSJSEhIwMWLF+Htff2B5sCBA/HNN9+YXa/NH68kJSVhxIgRSEhIQMeOHbFixQqkp6dj7Nixtl41ERHdQjTIEUKqZculpqZWOXpF+h83depUnDlzBh9++CGAskiVd955B0lJSRgzZgySk5OxatUqQ1QKUPYP/5577sG8efPQv39/fP755/j666+xd+/eKq8XAC5cuID09HRkZGQAAH755RcAZT0pERHq+M69e/di37598PAwHoHYqFEjnDkjjf4zzeaNjiFDhuD8+fOYPXs2MjMzERcXh61bt6JRo0a2XjUREZFNSf/jMjMzjXJnREdHY+vWrZg8eTKWLl2KyMhILFmyBIMGDTK8p1OnTli/fj1eeeUVTJs2DU2bNsWGDRvQvn37Kq8XALZs2YLRo0cb/h46dCgA0wNjb6TX61FaWnFY9OnTp+Hn51e9g3QDm+fpMNeNsdf3wnT0imp4j6WzLkoj5EMVZdIodGmkeIBQriKtWzXQSoogsWX0iip/CAA0bKgur9fEdJkUveIhPQaVTtiAhabLOk4WFhbse9N02abn1ctK0SvH1OVSrg2VXGHdJxUJM6R7V4r+Us3yLO2SI0evqNKqSNEr0jG1JHol28TrJQC++ut3e+Tp+ByAl5n1XAPQ/6/fW7RoARcXFyQmJiIxMdEKW1n7DBkyBP7+/lixYgX8/Pxw5MgRhIaGon///oiKijI7uoVzrxARkVOwVvRKdR6vOKtFixahe/fuiI2NxbVr1zBs2DAcP34cISEhRo+CqqtWNDpKYPo5nSo4SPpWIbXspfQnqph5KfZG2jbVtxLpW57UQ2NJ3VIwlpTNUfWBIPU8FQh5H65eEipQ8JC+vkpfQZMXmL9yT6Gr8thG02XC1/ZzvwvlQkZSb0VUnCoDLABcFS7yMMX5vCp8LZfuL9XplHo6pLotyaUh1S39w1Ttl3T/CJ19Fm2bqTILpjOhGhYZGYm0tDSsX78eqamp0Ov1+Pvf/47hw4cbDSytrlrR6CAiIpJYq6cjPj7+ln+8smfPHnTq1AmjR482GhdSUlKCPXv24J577jGrXjY6iIjIKdRE9Iqz6t69OzIzMxEWZjzLWF5eHrp3717pINOqYKODiIicgrUaHWQ6u+n58+ctapCx0UFEREQAgIceeghAWYr1xx9/3CgFfGlpKY4cOWJRAjI2OoiIyClYa0zHrax8BllN0+Dn52c0aNTDwwMdOnTAmDFjzK6fjQ4iInIK1nq8cisPJC3Pv9G4cWNMmTLF6mNbakWj4ypMh3O5K5aTwj8tndpeFeho6aQ2uYqyEGFZad2qcikQKk8ol6jOiTQNdoGwchchPFTFU7ivmrRSl/ucUqQFzk9SL+winLEixXcwYVEPIVOSnxA3XnzNdJkUwuwixFfXb2a67LyQZTkvV12uIs2NKYXESpHZuYoyKTJbuv9Uyfekb+pScjDpn4EqpNbUZ5J0LB0VB5KWZS21BZtO+EZERGQv1prwjYCzZ89ixIgRiIyMhJubG1xdXY1+zFUrejqIiIgkjF6xnscffxzp6emYNm0a6tWrV2kkiznY6CAiIrrBrTymo9zevXvx3XffoW3btlatl40OIiJyCpx7xXoaNmwIW8wHyzEdRETkFDQLf+i6xYsX48UXX8SpU6esWi97OoiIiMjIkCFDcOXKFTRt2hQ+Pj5wdzeOFb1w4YJZ9bLRQUREToHJwaxn8eLFNqm31jc6VM+HpKnrpSd2qhwgAOCvKJNyfEgx86p4fumkWTDDu3hMFGkbAMjP61S5TaRjIuUwUE2lrhM2LD9XXR5cT13uoypXzXUOoPic+uNOlcbDVcrDEaguLxJOaNYp02XXrqiXLRUSr6jOiV7o65buL1VAn5Q7IlQoV13DACCkL1GSpp9X7bcqhwcACKdLukyVn4em7l175+lg9Ir1jBo1yib11vpGBxEREcCp7S2Vn5+PunXrGn5XKX9fdbHRQUREdINbNXolMDDQMJ19QEBApbk5ymef5dT2RER0S+OYDsvs3LkTQUFlAxN27dplk3Ww0UFERE6DYzPM17Vr10p/tybm6SAiIiK7YE8HERE5BUavOD42OoiIyClwTIfjc+pGh9RyLRDKpbHLirQQyjJAzkmhWrel26066dKNFyyUS7lRVHykdQs5KeoqNq5ISELgLiQU0IQDU5RjuqxASNxwybzEfgAAP+GAe6gSvkCd2wRQ5+LIzVMvK90DAYr9lu4PKeeE6hqXPhc8hetMSlbTQlEmpC4Rc3yolg+xsG4pB0+uUE5UFRzTQURETsFac6/Ex8cjNjYWS5cutd/G3yKcuqeDiIhuHZxl1jLt2rWrNDdHZQ4ePGjWOtjoICIiIgwYMMDm62Cjg4iInAKjVywzY8YMm6+DjQ4iInIKjF5xfGx0EBGRU2BPh/WUlpZi0aJF+OSTT5Ceno6iIuOYsgsXzAu7Y/QKERERGZk1axYWLlyIRx55BHl5eUhKSsJDDz0EFxcXzJw50+x6a0VPxyWYbh2p4tYDhXqlnS8UylW5BKT596RyV0WZlCsjTChXtTSFtA7wFcqlXBuq/fIVmsABoeryYsUJOys0yv0svBMu55ouyz2nXrZQyCFiiRIL8494K074ZSFPhyJ1CQD1/ae6TgD5/lHVLRwSXBESVkjfiIMUQQ9XhSQ70qWgWrd070qXuLdQ/rui7KKJ182bh9R8fLxiPWvXrsXKlSvRt29fzJo1C48++iiaNm2K1q1bY//+/ZgwYYJZ9bKng4iInIK18nQQkJWVhVatWgEAfH19kZdX9i3jgQcewH/+8x+z62Wjg4iIiIw0aNAAmZmZAICYmBhs374dAPDDDz/A01PqVzONjQ4iInIKegt/6LqBAwfim2++AQBMnDgR06ZNQ7NmzTBy5Eg88cQTZtdbK8Z0EBERSawVvRIfHw8XFxckJiYiMTHRCltW+7z++uuG3x9++GE0aNAA33//PWJiYvDggw+aXS8bHURERDe4VdOgq3To0AEdOnSwuB42OoiIyCkwesW6fv31V3z77bfIzs6GXm98hKZPn25WnbWi0eEO0yF0/orlpOmxpWltpHAvU2FiAFBXWFaiWrc0hEeamVsVjiiFKkrll4RyD0VZkXDXu55VlxcqTrg0rXexNOf4EXWxj+KEewixiFIosJcqBFOYP/58prrc3V1druKhOpkAgoQbUBXFLA02k+4BVRe7dI1K5dI/p1BFWKwUhi+FzKoOufRYQfVZWZVy1WeSqTB96TPY2pgczHpWrlyJp59+GiEhIYiIiDCaCE6n0zl3o4OIiIjsZ86cOXj11VfxwgsvWLVeNjqIiMgp8PGK9Vy8eBGDBw+2er0MmSUiIqegwfxwWT5eMTZ48GBDbg5rYk8HERE5BY7psJ6YmBhMmzYN+/fvR6tWreB+0wAwc9Ogs9FBRERERlasWAFfX1/s3r0bu3fvNirT6XRsdBAR0a2NPR3Wc/LkSZvUy0YHERE5BQ4ktQ1NK2uS3Rg2a65a0ejwgun8EKqccdIU1hJplK3qIhVSL4jbpsqHIW2XFBtvyXGxNLeJKg+BlNvERdgxVbF0TKT8I9ekPB6KRCBSLo26QeryUsUJy81WL5snTD8vLK68jiPqqZd1FZKjZCnyWZxXLypew6rTJX3onRPKhdnplfendJ1J94+qXLrG/YRy6d6ONGPd14Q6ybF9+OGHePPNN3H8+HEAQPPmzfHcc89hxIgRZtdZKxodREREEvZ0WM/ChQsxbdo0jB8/Hp07d4amadi3bx/Gjh2LnJwcTJ482ax62eggIiKnwDEd1vP2229j2bJlGDlypOG1/v374/bbb8fMmTPNbnQwTwcREZEZ9uzZg379+iEyMhI6nQ6fffaZVerdvXs34uPj4eXlhSZNmmD58uVG5WvWrIFOp6vwc+2a9R5oZWZmolOnThVe79SpEzIzhfkVFNjoICIip6BZ+FNdBQUFaNOmDd555x3LN/4vJ0+eRJ8+fdClSxccOnQIL730EiZMmICNGzcava9u3brIzMw0+vHykmbeqrqYmBh88sknFV7fsGEDmjVrZna9fLxCREROwd5jOnr37o3evXubLC8qKsIrr7yCtWvXIjc3F3FxcZg3bx66detmcpnly5cjKioKixcvBgC0bNkSKSkpmD9/PgYNGmR4n06nQ0REhBlbXTWzZs3CkCFDsGfPHnTu3Bk6nQ579+7FN998U2ljpKrY00FERGQDo0ePxr59+7B+/XocOXIEgwcPRq9evQzRIJVJTk5Gjx49jF7r2bMnUlJSUFx8PW7r8uXLaNSoERo0aIAHHngAhw4dsuq2Dxo0CAcOHEBISAg+++wzbNq0CSEhIfjvf/+LgQMHml0vezqIiMgpWGsgaX5+PkpLrwcoe3p6wtPTs1r1nThxAuvWrcPp06cRGVkWcDxlyhRs27YNq1evxmuvvVbpcllZWQgPDzd6LTw8HCUlJcjJyUG9evVw2223Yc2aNWjVqhXy8/Px1ltvoXPnzjh8+LBFjz5uFh8fj48++shq9QG1pNGhytOhGjZjaZ4Od6FclV5BiseXqE6MdNKkHAdXFGUthGX9hXIhLYQyf4K3sGxNXqyqYwYAxYodk/I6uJ9SlzdUnBQ3D/WyUt4H6ZiqUoxcuijULdxAQYp+VhehrztHXazcbumYSClZpKfmqvQk0rLSZ5bqsEjXqCU5QAAgwIxlLf0Mri5rPV4pbySUmzFjBmbOnFmt+g4ePAhN09C8eXOj1wsLCxEcHAwA8PX1Nbz+2GOPGQaM3pyE6+bkXB06dECHDh0M5Z07d8Ydd9yBt99+G0uWLKnWdt4oPz8fdevWNfyuUv6+6qoVjQ4iIiKJtXo6MjIyUKfO9dST1e3lAAC9Xg9XV1ekpqbC1dX4a2h5YyMtLc3wWvk/8YiICGRlZRm9Pzs7G25ubobGys1cXFxw5513Kh/bVEVgYCAyMzMRFhaGgICASjOQapoGnU5n1BNUHWx0EBER3aB79+5wcXFBYmIiEhMTzaqjXbt2KC0tRXZ2Nrp06VLpe2JiYiq81rFjR3zxxRdGr23fvh0JCQkVZnotp2ka0tLS0KpVK7O2tdzOnTsRFFTWh79r1y6L6jKFjQ4iInIK1nq8kpqaatTTYcrly5fx22+/Gf4+efIk0tLSEBQUhObNm2P48OEYOXIkFixYgHbt2iEnJwc7d+5Eq1at0KdPn0rrHDt2LN555x0kJSVhzJgxSE5OxqpVq7Bu3TrDe2bNmoUOHTqgWbNmyM/Px5IlS5CWloalS5eaufdlunbtavg9OjoaDRs2rPRRz59//mn2OtjoICIip2DvjKQpKSno3r274e+kpCQAwKhRo7BmzRqsXr0ac+bMwbPPPoszZ84gODgYHTt2NNngAMr+2W/duhWTJ0/G0qVLERkZiSVLlhiFy+bm5uKpp55CVlYW/P390a5dO+zZswd33XWXGXthejvKH7Xc6MKFC4iOjjb78YpOKx+h4mAKCgoMz726wPTATNU4upocSBoiLGvJAL9AYVlpIJwlA0mFucnEgaS5irL6wrIBQrlqv6XJsCTCeE3ltSINJI0SZuJSDSTNFWYnS/9DXS6dL9V+hQujIqWBpNcUBybXwoGkqmtBuveE+fnEidFU14qlA0lVdUsDSaWB2rYYSHoNwJi/fr98+XKVeg+q68b/FVMg36umFAGY/9fvLVq0sPjxSm3n4uKCs2fPIjTUeNrHP/74A7GxsSgokD7ZKseeDiIicgr2frzijMp7a3Q6HaZNmwYfHx9DWWlpKQ4cOIC2bduaXb9NGx2vvvoq/vOf/yAtLQ0eHh7Izc01q56rMN3ToWrd+yjKAMu/dagIs3rDVyhvqCiTvrFcEMpVPSWqqcwBQBrDbUm4oVR3rlCu+qYmhTBL5VeFctW3X7HuS0K54qt3kbBh0rc+6TpUVZ8pTPPgI5TXUYTMSveuFKx3RlFmSe8OIH9oqtYtfaYECOWqkHWpN0/6TJKOS+VxE2VM3buFQp3WxgnfLFeeZEzTNPz444/w8Lj+KeLh4YE2bdpgypQpZtdv00ZHUVERBg8ejI4dO2LVqlW2XBURERFZqDxqZfTo0XjrrbfMzsdhik3ToM+aNQuTJ0+2OIyHiIhIorfwp1x8fDxiY2MtjgapzRYvXoySkop91xcuXBATh6lw7hUiInIKGsxvcNz4eCU1NRU//fTTLTuIFACGDh2K9evXV3j9k08+wdChQ82u16EaHYWFhcjPzzf8EBERkf0dOHDAKBy4XLdu3XDgwAGz6612o2PmzJnQ6XTKn5SUFLM2Zu7cufD394e/v3+F3PdEREQqmoU/dF1hYWGlj1eKi4tx9ao0tN60ajc6xo8fj2PHjil/4uLizNqYqVOnIi8vD3l5ecjIyDCrDiIiujVZq9HBMR3AnXfeiRUrVlR4ffny5YiPjze73mpHr4SEhCAkREp9ZZ4bpw++eYIcIiIiFebpsJ5XX30Vf/vb33D48GHcd999AIBvvvkGP/zwA7Zv3252vTYNmU1PT8eFCxeQnp6O0tJSw4x6MTExRlP6SnJguktG1VUj5X2QtkDKvmlJboZ6QrkqX4Z0U0mZBVUJMKW4eilbo7R89edqrPq6zyrKpI8P6VqQslCqBAjl0vk6/avpsnzhYpCuFel8qLqcVccbkPPghCs2TsrTIZ1PVS4bVR4NaVmgLMumiuo6lZaV7h9Vng/pXFqy3YA6f4mpHB58ZFF7de7cGcnJyXjzzTfxySefwNvbG61bt8aqVavQrFkzs+u1aaNj+vTp+Oc//2n4u127dgDK4oC7detmy1UTEdEthsnBrKtt27ZYu3atVeu0aaNjzZo1WLNmjS1XQUREBMB6j1fI2NWrV1FcbNzPZm7SMIcKmSUiIqppHEgKXLlyBePHj0dYWBh8fX0RGBho9GMuTvhGREROwVqPVziQFHjuueewa9cuvPvuuxg5ciSWLl2KM2fO4L333sPrr79udr1sdBARkVPg4xXr+eKLL/Dhhx+iW7dueOKJJ9ClSxfExMSgUaNGWLt2LYYPH25WvXy8QkREREYuXLiA6OhoAGXjNy5cKJu//O6778aePXvMrpeNDiIicgrMSGo9TZo0walTpwAAsbGx+OSTTwCU9YAEBASYXW+teLziAtOtI3/FctITuQALy1W5OKQLWMrjcVFRpoqXB+R4fNVJr5j01liOUF4glKuGH0mJdaV1q46ZlHtB6lqVzqcqf4LUspfWrcrFIZ2vIqFcyu2guk6ldUuzJ6mOWYSwrIdQbipvBKC+TgBAyoVsSZ4cKXeJlLPlvKJM+jCXyqVYhCuKMlPbLV1/1sbHK9YzevRoHD58GF27dsXUqVPRt29fvP322ygpKcHChQvNrrdWNDqIiIjsJT4+Hi4uLkhMTLxlZ5qdPHmy4ffu3bvj559/RkpKCpo2bYo2bdqYXS8bHURE5BQYvWIdxcXF6NGjB9577z00b94cABAVFYWoqCiL62ajg4iInAIfr1iHu7s7jh49Cp3OkgkgKseBpERE5BQ4kNR6Ro4ciVWrVlm9XvZ0EBERkZGioiK8//772LFjBxISEio8bjJ3MCkbHURE5BT4eMV6jh49ijvuuAMA8OuvxlNdW/LYhY0OIiJyCpxl1nK///47oqOjsWvXLpvUXysaHaEwnS9ANb5Yys0g5RmQ8kaoYu6ldmChBeWXhWV9hXLVMZPi6qU8HNIxM3+aIPlDQZVz4pywrJTbRMpnodpvKTeDKtcMoB54ZekHpXQdqnJpSB8e0rap8q6ockIAQAOhXHXvRwvLSn4TylXHVPpMko6p6jNLyosikbbtkqLM1P0jfcaS42nWrBkyMzMRFhYGABgyZAiWLFmC8PBwq9TPgaREROQU9Bb+lLuVZ5nVNOOvC1u3bkVBgfR1s+pqRU8HERGRRIP5YzOYp8M+2NNBREREAMoGid48UNSa+TrY00FERE6BA0ktp2kaHn/8cXh6lo1ku3btGsaOHVuh52fTpk1m1c9GBxEROQU2Oiw3atQoo78fe+wxq9bPRgcREREBAFavXm3T+mtFo8MbpkNmVTsghSpaGtaqCl1tLCwbIJSrQjClcEIp9M1PUSaFzEqDgKRy1TG7ICwrnS/VfuUKy0rHVKJatxSOa8nTUh+hXAqfPiuUq8IkpenlpdBuS65xab9U2ybdHxFCubRtpxRlUki5dD5VYbF5wrLSut2FctVnraleAnuHzDI5mOOrFY0OIiIiCR+vOD42OoiIyCmwp8PxMWSWiIiI7II9HURE5BT4eMXxsaeDiIicAtOgOz72dBAREd2AadBth40OIiJyCny84vhqRaOjBKYviLqK5SyZ/hqwbKpoabpyKc9AqaJMtc+AnD/BnCmqy6m2qyrlqmMq5UWRngWq8hBI+yXldDGVJ6ac6pxIuU+kfBaqCaX9hQ2/Juy4lLvhnGrdwrLStaD6kJeWvSiUeyrKpPtHKo8SylW5KU4Ly0q5alQ5QqRzKZVL17jqfJmK/LB3RAijVxwfx3QQERGRXdSKng4iIiIJH684PjY6iIjIKfDxiuPj4xUiIiKyC/Z0EBGRU+DjFcfHRgcRETkFPl5xfGx0EBGRU2BPh+OrFY0Ob5je0EDFcgFCve5CuSreHlDndpBazeeFclVMfbGwrERVd66wrJTvQto26ZiqSB8KoYoy6XxIeR+kdatyVqhyKwBy/gRV/hJP4YToLKgbsOxak/JdqPLFSMdbyn2SLZSrSDl0pPwk9RRlqn0G5P1W5dKQjomUh0MqV91DpvKqsPeAblYrGh1EREQSDeY3dNjTYR9sdBARkVPQQ+7dUy1LtseQWSIiIjPs2bMH/fr1Q2RkJHQ6HT777DOr1Lt7927Ex8fDy8sLTZo0wfLlyyu8Jzc3F4mJiahXrx68vLzQsmVLbN261SrrtyX2dBARkVOw90DSgoICtGnTBqNHj8agQYPMXLOxkydPok+fPhgzZgw++ugj7Nu3D+PGjUNoaKhhHUVFRbj//vsRFhaGTz/9FA0aNMCff/4JPz8/q2yDLbHRQURETsHejY7evXujd+/eJsuLiorwyiuvYO3atcjNzUVcXBzmzZuHbt26mVxm+fLliIqKwuLFiwEALVu2REpKCubPn29odHzwwQe4cOECvv/+e7i7l4VENGrUyIw9sD8+XiEiIrpBfn6+0U9hoRTnVbnRo0dj3759WL9+PY4cOYLBgwejV69eOH78uMllkpOT0aNHD6PXevbsiZSUFBQXl8WTbdmyBR07dkRiYiLCw8MRFxeH1157DaWl0vzMNa9W9HQEwfSGqsLXpPA0iRQeak4IWTkpRFM13bkUiiiFYKrqlqZZl8I/pQvKvFu3TIBQrvqmIoV+Sq1vD6FcVb8Umm1JGLI0aK6OsGNBwug51fm0NKxVdX9K14l0f6mOaYGwbH2hXAqZVXVwRwjLSsdMdVykUF9pvy2J3nCkqe2tMZA0MjLSqGzGjBmYOXNmteo7ceIE1q1bh9OnTxvqmzJlCrZt24bVq1fjtddeq3S5rKwshIeHG70WHh6OkpIS5OTkoF69evj999+xc+dODB8+HFu3bsXx48eRmJiIkpISTJ8+vVrbaW+1otFBREQksVajIyMjA3Xq1DH87enpWe36Dh48CE3T0Lx5c6PXCwsLERwcDADw9b3eVHzssccMA0Z1OuO90DTN6HW9Xo+wsDCsWLECrq6uiI+PR0ZGBt588002OoiIiGqTunXrGjU6zKHX6+Hq6orU1FS4uhqnXitvbKSlpRmtEwAiIiKQlZVl9P7s7Gy4ubkZGiv16tWDu7u7Ub0tW7ZEVlYWioqK4OEh9c3WHDY6iIjIKVhrIGl8fDxcXFyQmJiIxMREs+pr164dSktLkZ2djS5dulT6npiYmAqvdezYEV988YXRa9u3b0dCQoJh0Gjnzp3x8ccfQ6/Xw8Wl7Bnqr7/+inr16jl0gwNgo4OIiJyEtRodqampVerpuHz5Mn777TfD3ydPnkRaWhqCgoLQvHlzDB8+HCNHjsSCBQvQrl075OTkYOfOnWjVqhX69OlTaZ1jx47FO++8g6SkJIwZMwbJyclYtWoV1q1bZ3jP008/jbfffhsTJ07EM888g+PHj+O1117DhAkTzNx7+2Gjg4iInIK9M5KmpKSge/fuhr+TkpIAAKNGjcKaNWuwevVqzJkzB88++yzOnDmD4OBgdOzY0WSDAwCio6OxdetWTJ48GUuXLkVkZCSWLFlilAekYcOG2L59OyZPnozWrVujfv36mDhxIl544QUz9sK+dFr5CBUHU1BQYHjuNQSmW0dhijqqP/THmBRVoJrwTVq3LaNXpImbnDV6RXVcpO2WhAjlAYoyH2HZfKFcdT7bCctK0SunhU9a1bZJHxxShMnvijLpOpG+g6oihqRoIkujV1TRY2eEZdOFctVxyROWtWX0iqmJHEsB7Pnr98uXL1s8TqIyN/6vuAvy558ppQD++9fvLVq0sPjxClWOPR1EROQUrNXTUdXHK1R9taLRoZoOXdXyl6ZRl74ZSAdH6nFQkbryVF9QpW+QlkxnLh0Tad3StyXVfkvHM0AoV33Dkb7lSXk6pDwfuYoy6Zh5C+WqYWHnhWUvCReadFxUuR+knBJnhXJVng6pbqk8UFGWIywr9Yo1EcpVxyxIWFY6H1mKMikBtvS5IB1Tc/Lg2Lsb3d4ZSan6mJGUiIiI7IKNDiIicgqahT/l4uPjERsbi6VLl9pv428RteLxChERkYRjOhwfezqIiIjILtjTQURETsHeeTqo+tjTQUREToFjOhwfezqIiIhuwDEdtlMrGh3+MJ1FMFyxnNRdJsXES1lFVXHxUm4GKSuiKi+EVLe0X6osk1KeDmkqISk3iqprTZXJEVDndQDU+S6kYybl4bAkj4e0X6qcEoA6f4mUQVbabmnbLMldYEn2WWm7pXtbdR1L16gqF0ZVNFKUqbIYA+oMy4D6mJ4WlrV0GjBzcgdJx9ramKfD8dWKRgcREZFEg/ljM9josA82OoiIyCmwp8PxcSApERHRDTiQ1HZs1ug4deoU/v73vyM6Ohre3t5o2rQpZsyYgaIiKcM/ERFR9ekt/CmXmpqKn376iTPM2oDNHq/8/PPP0Ov1eO+99xATE4OjR49izJgxKCgowPz58221WiIiukXx8Yrjs1mjo1evXujVq5fh7yZNmuCXX37BsmXL2OggIiK6Bdl1IGleXh6CgqTJnSsKhOlwr2DFcqrQ0PJ6VaSwVlUI5zVhWSmsVVW3FIYmTc2tCgVWTQ9vDapvE1KIsjQFvCXhedJDPylcV7Xt0rLnhHLVMZNuYGkkvyUfANL5kq4lVci5FLotfStV3X/SuZYyWqYL5Sr1hXIprFWVIkC67/8UyqVjqjpupo63FKpubZZkFWVGUvuwW6PjxIkTePvtt7FgwQKT7yksLERhYVkkekGB9G+ZiIjoOj5ecXzVHkg6c+ZM6HQ65U9KSorRMhkZGejVqxcGDx6MJ5980mTdc+fOhb+/P/z9/REZGVn9vSEiIrIQo1dsR6dpWrUaeDk5OcjJyVG+p3HjxvDyKsu9l5GRge7du6N9+/ZYs2YNXFxMt3Nu7ukob3g8C9PdjqruSunxynmhXHq8ouoKlR6v5ArlNfV45YKwrNRlLm2bqutaevAWYcG6pf2SzpfUBJYeNahI+x2iKLO0q9KSzLnSPkuPIS4qyix9vKLaL0sfr0jd8FGKMksfr6gy0J4Ulq2pxyvf//X75cuXbZJavKCgAL6+vgCAJjA/JFMP4Pe/frfVtpIZn1khISEICVF9DF535swZdO/eHfHx8Vi9erWywQEAnp6e8PQs+yhzdbX16AIiInImfLzi+Gw2piMjIwPdunVDVFQU5s+fj3Pnrg+Xi4iQvrMSERGRs7FZo2P79u347bff8Ntvv6FBgwZGZdV8okNERCRi9Irjs1lG0scffxyaplX6Q0REZG2ahT9ke7ViwjcdTA/uylYsJ+VHsGTqbUA9UFUapCoFBKvKpWWlk6oakSPlLvERyqVjLg0QVJEGyKpII4Sk1rd66LR6MKg0IFka2Kj6BmZpHgRLcp+o7j1AHpBZV1EmXUdSuYq0XRJpsOcpC+qWHjyr7u1QYVnpGs4SylVMXYfM00E344RvREREN2DIrO3Uip4OIiIiibV6OlJTUxkyayNsdBARkVNgyKzj4+MVIiIisgv2dBARkVNgT4fjY6ODiIicAqNXHB8frxAREZFd1IqejqswnS9AlbtBiktX5QkA5EnAVLkCzgjLShOjqeLbVZM+AXLuBdV2hwvLSq1UaRIw1bZJdUuTtqkuZim3grTdUp6Pq4oy6XxIdavOt1R3Q6HcSyhXTcomXeOWfHNUHU9AvgdUpNwRUh4P6Xz5KsqkSdek3EGWTP4nTSwo3V+qY+4oeTo0mH/d8fGKfdSKRgcREZHEkoYDGx32wccrREREZBfs6SAiIqfAng7Hx54OIiJyCnoLf8oxDbrtsKeDiIicgh7mT+h3Y08H06DbDns6iIiIyC7Y00FERE6BYzocX61odJTCdJeMKp7/nFCv1HnmI5QXKMqkLqR8oVy1vBSHXiyUq3KEqPKeVKVud6FcdcFJF2ORBeVS3gcpb4q03/6KskBhWemYqc63lFtBys0g5ZzIU5RJ95fq/gCAUEWZtN1Sng7V/aPKPQLI14KUG8XPgrp/F8pVy0t5h1T5QwCgvlCuyjFi6v4y91GHudjocHx8vEJERER2USt6OoiIiCTWGkhKtsNGBxEROQU+XnF8fLxCREREdsGeDiIicgp8vOL42OggIiKnwMcrjq9WNDrCYXpqclVYnhRCJoWvqaaAB9Rhr1J4pxSuG6AoyxSWlUIwVdNNS9sthSpK3zJU4YbS+cgRylX7JYVgmrq+yknhoarQ02vCspaET0vHRArXlY6LJaHAnkK5ihTK6yWUq0KcpXMthVdLIbOqdUv3jzQVfJaiTNruEKFcda4B9babCrXnP3K6Wa1odBAREUn4eMXxsdFBREROgY9XHB+jV4iIyClYa5bZqtqzZw/69euHyMhI6HQ6fPbZZxbvAwDs3r0b8fHx8PLyQpMmTbB8+XKj8m7dukGn01X46du3r1XWb0tsdBAREZmhoKAAbdq0wTvvvGO1Ok+ePIk+ffqgS5cuOHToEF566SVMmDABGzduNLxn06ZNyMzMNPwcPXoUrq6uGDx4sNW2w1b4eIWIiJyCvR+v9O7dG7179zZZXlRUhFdeeQVr165Fbm4u4uLiMG/ePHTr1s3kMsuXL0dUVBQWL14MAGjZsiVSUlIwf/58DBo0CAAQFGQ8BHz9+vXw8fFho8MSmnb9ElBFVKhGikvREFK5dBGqlpdGoVtSLnUDWlK3dEykuqVBXKr6LV23JfsldflZsm5psjipXHVMpWULhXIpska1vBTpJG2b6jqWjrcl97YtrzNL1y3d26rlpeNt6fky5/Puxtdv/Ey3FQ2ONTZj9OjROHXqFNavX4/IyEhs3rwZvXr1wo8//ohmzZpVukxycjJ69Ohh9FrPnj2xatUqFBcXw929YnziqlWrMHToUNSpI8VF1jyHbXRcuXI9CGtuDW4HERFZ7sqVK/D1lea6dQz5+fkoLb3eZPL09ISnZ/WCwE+cOIF169bh9OnTiIyMBABMmTIF27Ztw+rVq/Haa69VulxWVhbCw8ONXgsPD0dJSQlycnJQr149o7L//ve/OHr0KFatWlWt7aspHNNBRER0g8jISPj7+xt+5s6t/lffgwcPQtM0NG/eHL6+voaf3bt348SJEwBg9PrYsWMNy+p0xv2b5b1EN78OlPVyxMXF4a677qr2NtYEh+3pCAkJwdmzZwEAPj4+lR7smpCfn4/IyEhkZGSgbl0p/diti8epanicqobHqWoc7ThpmmbotQ4JkdKTmcfHxweXL0tp16qusLAQrq6uRv9zqtvLAQB6vR6urq5ITU2Fq6txurvyHp+0tDTDa+XnKyIiAllZxmngsrOz4ebmhuDgYKPXr1y5gvXr12P27NnV3r6a4rCNDhcXF4SFhdX0ZlRQ3uVWp06dWvH8rKbwOFUNj1PV8DhVjSMeJ1s/UtHpdFbdV2vV1a5dO5SWliI7OxtdunSp9D0xMTEVXuvYsSO++OILo9e2b9+OhISECuM5PvnkExQWFuKxxx6zyjbbAx+vEBERmeHy5ctIS0sz9FicPHkSaWlpSE9PR/PmzTF8+HCMHDkSmzZtwsmTJ/HDDz9g3rx52Lp1q8k6x44diz/++ANJSUk4duwYPvjgA6xatQpTpkyp8N5Vq1ZhwIABFXpAHJnD9nQQERE5spSUFHTv3t3wd1JSEgBg1KhRWLNmDVavXo05c+bg2WefxZkzZxAcHIyOHTuiT58+JuuMjo7G1q1bMXnyZCxduhSRkZFYsmSJIVy23K+//oq9e/di+/btttk5G2Gjo5o8PT0xY8YMs57x3Up4nKqGx6lqeJyqhsfJvrp166YMBXZ3d8esWbMwa9asatXbtWtXHDx4UPme5s2b2yUM2dp0Wm3caiIiIqp1OKaDiIiI7IKNDiIiIrILNjqIiIjILtjoICIiIrtgo8MCp06dwt///ndER0fD29sbTZs2xYwZM1BUJE2tdGt59dVX0alTJ/j4+CAgIKCmN8dhvPvuu4iOjoaXlxfi4+Px3Xff1fQmOZw9e/agX79+iIyMhE6nw2effVbTm+Rw5s6dizvvvBN+fn4ICwvDgAED8Msvv9T0ZhFVio0OC/z888/Q6/V477338L///Q+LFi3C8uXL8dJLL9X0pjmUoqIiDB48GE8//XRNb4rD2LBhAyZNmoSXX34Zhw4dQpcuXdC7d2+kp6fX9KY5lIKCArRp0wbvvPNOTW+Kw9q9ezcSExOxf/9+7NixAyUlJejRowcKCgpqetOIKmDIrJW9+eabWLZsGX7//fea3hSHs2bNGkyaNAm5ubk1vSk1rn379rjjjjuwbNkyw2stW7bEgAEDzJpc6lag0+mwefNmDBgwoKY3xaGdO3cOYWFh2L17N+65556a3hwiI+zpsLK8vDwEBQXV9GaQAysqKkJqaip69Ohh9HqPHj3w/fff19BWkbPIy8sDAH4OkUNio8OKTpw4gbfffttoimKim+Xk5KC0tBTh4eFGr4eHh1eYXZKoOjRNQ1JSEu6++27ExcXV9OYQVcBGRyVmzpwJnU6n/ElJSTFaJiMjA7169cLgwYPx5JNP1tCW2485x4iM3Th1NlD2D+Pm14iqY/z48Thy5AjWrVtX05tCVCnOvVKJ8ePHY+jQocr3NG7c2PB7RkYGunfvjo4dO2LFihU23jrHUN1jRNeFhITA1dW1Qq9GdnZ2hd4Poqp65plnsGXLFuzZswcNGjSo6c0hqhQbHZUICQlBSEhIld575swZdO/eHfHx8Vi9ejVcXG6NzqPqHCMy5uHhgfj4eOzYsQMDBw40vL5jxw7079+/BreMaiNN0/DMM89g8+bN+PbbbxEdHV3Tm0RkEhsdFsjIyEC3bt0QFRWF+fPn49y5c4ayiIiIGtwyx5Keno4LFy4gPT0dpaWlSEtLAwDExMTA19e3ZjeuhiQlJWHEiBFISEgw9JClp6dzPNBNLl++jN9++83w98mTJ5GWloagoCBERUXV4JY5jsTERHz88cf4/PPP4efnZ+hB8/f3h7e3dw1vHdFNNDLb6tWrNQCV/tB1o0aNqvQY7dq1q6Y3rUYtXbpUa9Sokebh4aHdcccd2u7du2t6kxzOrl27Kr12Ro0aVdOb5jBMfQatXr26pjeNqALm6SAiIiK7uDUGIBAREVGNY6ODiIiI7IKNDiIiIrILNjqIiIjILtjoICIiIrtgo4OIiIjsgo0OIiIisgs2OoiIiMgu2OggIiIiu2Cjg8iGiouLa3oTiIgcBhsdRNWwbds23H333QgICEBwcDAeeOABnDhxAgBw6tQp6HQ6fPLJJ+jWrRu8vLzw0UcfAQA++OAD3H777fD09ES9evUwfvx4Q50zZ85EVFQUPD09ERkZiQkTJhjKioqK8Pzzz6N+/fqoU6cO2rdvj2+//dZom/bt24euXbvCx8cHgYGB6NmzJy5evGj7g0FEVE1sdBBVQ0FBAZKSkvDDDz/gm2++gYuLCwYOHAi9Xm94zwsvvIAJEybg2LFj6NmzJ5YtW4bExEQ89dRT+PHHH7FlyxbExMQAAD799FMsWrQI7733Ho4fP47PPvsMrVq1MtQ1evRo7Nu3D+vXr8eRI0cwePBg9OrVC8ePHwcApKWl4b777sPtt9+O5ORk7N27F/369UNpaal9DwwRURVwwjciC5w7dw5hYWH48ccf4evri+joaCxevBgTJ040vKd+/foYPXo05syZU2H5hQsX4r333sPRo0fh7u5uVHbixAk0a9YMp0+fRmRkpOH1v/3tb7jrrrvw2muvYdiwYUhPT8fevXttt5NERFbCng6iajhx4gSGDRuGJk2aoG7duoiOjgYApKenG96TkJBg+D07OxsZGRm47777Kq1v8ODBuHr1Kpo0aYIxY8Zg8+bNKCkpAQAcPHgQmqahefPm8PX1Nfzs3r3b8EinvKeDiKg2cKvpDSCqTfr164eGDRti5cqViIyMhF6vR1xcHIqKigzvqVOnjuF3b29vZX0NGzbEL7/8gh07duDrr7/GuHHj8Oabb2L37t3Q6/VwdXVFamoqXF1djZbz9fWtUv1ERI6EPR1EVXT+/HkcO3YMr7zyCu677z60bNlSHLDp5+eHxo0b45tvvjH5Hm9vbzz44INYsmQJvv32WyQnJ+PHH39Eu3btUFpaiuzsbMTExBj9REREAABat26trJuIyJGwp4OoigIDAxEcHIwVK1agXr16SE9Px4svviguN3PmTIwdOxZhYWHo3bs3Ll26hH379uGZZ57BmjVrUFpaivbt28PHxwf/+te/4O3tjUaNGiE4OBjDhw/HyJEjsWDBArRr1w45OTnYuXMnWrVqhT59+mDq1Klo1aoVxo0bh7Fjx8LDwwO7du3C4MGDERISYoejQkRUdezpIKoiFxcXrF+/HqmpqYiLi8PkyZPx5ptvisuNGjUKixcvxrvvvovbb78dDzzwgCH6JCAgACtXrkTnzp0NvRZffPEFgoODAQCrV6/GyJEj8eyzz6JFixZ48MEHceDAATRs2BAA0Lx5c2zfvh2HDx/GXXfdhY4dO+Lzzz+Hmxu/TxCR42H0ChEREdkFezqIiIjILtjoICIiIrtgo4OIiIjsgo0OIiIisgs2OoiIiMgu2OggIiIiu2Cjg4iIiOyCjQ4iIiKyCzY6iIiIyC7Y6CAiIiK7YKODiIiI7IKNDiIiIrKL/w8+s0fXFR1EkwAAAABJRU5ErkJggg==",
+ "text/plain": [
+ "