From 9b25f040094e48140ef04da6ed4ee070910b4173 Mon Sep 17 00:00:00 2001 From: Mihai Cara Date: Tue, 8 Oct 2024 23:32:31 -0400 Subject: [PATCH] changelog; flake8 --- CHANGES.rst | 4 ++-- changes/8866.resample.rst | 1 + jwst/resample/gwcs_drizzle.py | 7 +------ jwst/resample/resample.py | 35 +++++++++++++++++++-------------- jwst/resample/resample_utils.py | 3 +-- 5 files changed, 25 insertions(+), 25 deletions(-) create mode 100644 changes/8866.resample.rst diff --git a/CHANGES.rst b/CHANGES.rst index 7500ad652f..b178c76ab9 100644 --- a/CHANGES.rst +++ b/CHANGES.rst @@ -43,7 +43,7 @@ associations - Excluded nearby background candidates from NIRSpec fixed slit associations for S1600A1 with 5 point dithers, to reduce overlap between background nods and science exposure. [#8744] - + - Added association rule for level 3 image mosaic candidates. [#8798] badpix_selfcal @@ -274,7 +274,7 @@ pipeline optional `on_disk` parameter to govern whether models in the library should be stored in memory or on disk. [#8683] -- Updated ``calwebb_spec2`` to run ``nsclean`` on NIRSpec imprint and background +- Updated ``calwebb_spec2`` to run ``nsclean`` on NIRSpec imprint and background association members. [#8786, #8809] - Updated `calwebb_spec3` to not save the `pixel_replacement` output by default.[#8765] diff --git a/changes/8866.resample.rst b/changes/8866.resample.rst new file mode 100644 index 0000000000..f31024d0ee --- /dev/null +++ b/changes/8866.resample.rst @@ -0,0 +1 @@ +Updated resample code to support the new ``drizzle`` API, see https://github.com/spacetelescope/drizzle/pull/134 for more details. diff --git a/jwst/resample/gwcs_drizzle.py b/jwst/resample/gwcs_drizzle.py index 63f0a84ad7..22450fc87e 100644 --- a/jwst/resample/gwcs_drizzle.py +++ b/jwst/resample/gwcs_drizzle.py @@ -1,6 +1,6 @@ import numpy as np -from drizzle import cdrizzle, utils +from drizzle import cdrizzle from . import resample_utils import logging @@ -380,13 +380,8 @@ def dodrizzle(insci, input_wcs, inwht, output_wcs, outsci, outwht, outcon, # Compute the mapping between the input and output pixel coordinates # for use in drizzle.cdrizzle.tdriz - - # pixmap = utils.calc_pixmap(input_wcs, output_wcs) pixmap = resample_utils.calc_gwcs_pixmap(input_wcs, output_wcs, insci.shape) - # inwht[np.isnan(pixmap[:,:,0])] = 0. - - print(f"Pixmap shape: {pixmap.shape}") log.debug(f"Pixmap shape: {pixmap[:,:,0].shape}") log.debug(f"Input Sci shape: {insci.shape}") log.debug(f"Output Sci shape: {outsci.shape}") diff --git a/jwst/resample/resample.py b/jwst/resample/resample.py index a0d1b53d1f..c7501cc8ba 100644 --- a/jwst/resample/resample.py +++ b/jwst/resample/resample.py @@ -192,7 +192,6 @@ def __init__(self, input_models, output=None, single=False, blendheaders=True, output_pix_area * np.rad2deg(3600)**2 ) - def do_drizzle(self, input_models): """Pick the correct drizzling mode based on self.single """ @@ -357,7 +356,7 @@ def resample_many_to_many(self, input_models): # build ModelLibrary as an association from the output files # this saves memory if there are multiple groups asn = asn_from_list(output_models, product_name='outlier_i2d') - asn_dict = json.loads(asn.dump()[1]) # serializes the asn and converts to dict + asn_dict = json.loads(asn.dump()[1]) # serializes the asn and converts to dict return ModelLibrary(asn_dict, on_disk=True) # otherwise just build it as a list of in-memory models return ModelLibrary(output_models, on_disk=False) @@ -397,9 +396,11 @@ def resample_many_to_one(self, input_models): log.debug(f'Using intensity scale iscale={iscale}') img.meta.iscale = iscale - inwht = resample_utils.build_driz_weight(img, - weight_type=self.weight_type, - good_bits=self.good_bits) + inwht = resample_utils.build_driz_weight( + img, + weight_type=self.weight_type, + good_bits=self.good_bits, + ) # apply sky subtraction blevel = img.meta.background.level if not img.meta.background.subtracted and blevel is not None: @@ -446,14 +447,13 @@ def resample_many_to_one(self, input_models): return ModelLibrary([output_model,], on_disk=False) - def resample_variance_arrays(self, output_model, input_models): """Resample variance arrays from input_models to the output_model. Variance images from each input model are resampled individually and - added to a weighted sum. If weight_type is 'ivm', the inverse of the + added to a weighted sum. If ``weight_type`` is 'ivm', the inverse of the resampled read noise variance is used as the weight for all the variance - components. If weight_type is 'exptime', the exposure time is used. + components. If ``weight_type`` is 'exptime', the exposure time is used. The output_model is modified in place. """ @@ -493,8 +493,10 @@ def resample_variance_arrays(self, output_model, input_models): if rn_var is not None: mask = (rn_var >= 0) & np.isfinite(rn_var) & (weight > 0) weighted_rn_var[mask] = np.nansum( - [weighted_rn_var[mask], - rn_var[mask] * weight[mask] * weight[mask]], + [ + weighted_rn_var[mask], + rn_var[mask] * weight[mask] * weight[mask] + ], axis=0 ) total_weight_rn_var[mask] += weight[mask] @@ -506,8 +508,10 @@ def resample_variance_arrays(self, output_model, input_models): if pn_var is not None: mask = (pn_var >= 0) & np.isfinite(pn_var) & (weight > 0) weighted_pn_var[mask] = np.nansum( - [weighted_pn_var[mask], - pn_var[mask] * weight[mask] * weight[mask]], + [ + weighted_pn_var[mask], + pn_var[mask] * weight[mask] * weight[mask] + ], axis=0 ) total_weight_pn_var[mask] += weight[mask] @@ -517,8 +521,10 @@ def resample_variance_arrays(self, output_model, input_models): if flat_var is not None: mask = (flat_var >= 0) & np.isfinite(flat_var) & (weight > 0) weighted_flat_var[mask] = np.nansum( - [weighted_flat_var[mask], - flat_var[mask] * weight[mask] * weight[mask]], + [ + weighted_flat_var[mask], + flat_var[mask] * weight[mask] * weight[mask] + ], axis=0 ) total_weight_flat_var[mask] += weight[mask] @@ -549,7 +555,6 @@ def resample_variance_arrays(self, output_model, input_models): del weighted_rn_var, weighted_pn_var, weighted_flat_var del total_weight_rn_var, total_weight_pn_var, total_weight_flat_var - def _resample_one_variance_array(self, name, input_model, output_model): """Resample one variance image from an input model. diff --git a/jwst/resample/resample_utils.py b/jwst/resample/resample_utils.py index 0ff50902de..3775cb5377 100644 --- a/jwst/resample/resample_utils.py +++ b/jwst/resample/resample_utils.py @@ -4,7 +4,6 @@ import numpy as np from astropy import units as u -import gwcs from drizzle.utils import calc_pixmap from stdatamodels.dqflags import interpret_bit_flags @@ -125,7 +124,7 @@ def shape_from_bounding_box(bounding_box): def calc_gwcs_pixmap(in_wcs, out_wcs, shape=None): """ Return a pixel grid map from input frame to output frame. """ - if shape and not np.array_equiv(shape, in_wcs.array_shape): + if shape is not None and not np.array_equiv(shape, in_wcs.array_shape): in_wcs = deepcopy(in_wcs) in_wcs.array_shape = shape