forked from porterjenkins/deep-learning-final
-
Notifications
You must be signed in to change notification settings - Fork 0
/
data_prep.py
136 lines (101 loc) · 6.12 KB
/
data_prep.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import numpy as np
import pandas as pd
import tsahelper.tsahelper as tsa
import matplotlib.pyplot
import matplotlib.animation
from numba import jit, prange
#INPUT_FOLDER = '/gpfs/scratch/spd13/tsa_datasets/stage1/aps'
#PREPROCESSED_DATA_FOLDER = '/gpfs/scratch/spd13/tsa_datasets/preprocessed/'
#STAGE1_LABELS = '/gpfs/scratch/spd13/tsa_datasets/stage1/stage1_labels.csv'
INPUT_FOLDER = 'tsa_datasets/stage1/aps'
PREPROCESSED_DATA_FOLDER = '/tsa_datasets/preprocessed/'
STAGE1_LABELS = 'tsa_datasets/stage1/stage1_labels.csv'
# OPTION 1: get a list of all subjects for which there are labels
df = pd.read_csv(STAGE1_LABELS)
df['Subject'], df['Zone'] = df['Id'].str.split('_',1).str
SUBJECT_LIST = df['Subject'].unique()
y_df =df.pivot_table(df,columns=[df.Zone],index=df.Subject)
y_index = y_df.index.get_values()
y_array=y_df.values
batch_size = 16
no_epoch = 100
examplesPer = 10 #len(SUBJECT_LIST)
ts = 16
size_1 = 660
size_2 = 512
print('DATA Prep')
#run epochs of sampling data then training
#X_train = []
#y_train = []
#X_train = np.zeros((examplesPer,ts,size_1,size_2,1))
@jit( #__________________ a list of signatures for prepared alternative code-paths, to avoid a deferred lazy-compilation if undefined
nopython = False, #__________________ forces the function to be compiled in nopython mode. If not possible, compilation will raise an error.
nogil = True, #__________________ tries to release the global interpreter lock inside the compiled function. The GIL will only be released if Numba can compile the function in nopython mode, otherwise a compilation warning will be printed.
cache = False, #__________________ enables a file-based cache to shorten compilation times when the function was already compiled in a previous invocation. The cache is maintained in the __pycache__ subdirectory of the directory containing the source file.
forceobj = False, #__________________ forces the function to be compiled in object mode. Since object mode is slower than nopython mode, this is mostly useful for testing purposes.
locals = {} #__________________ a mapping of local variable names to Numba Types.
) #____________________# [_v41] ZERO <____ TEST *ALL* CALLED sub-func()-s to @.jit() too >>>>>>>>>>>>>>>>>>>>> [DONE]
#for i in range(0,examplesPer):
def transfrom_data(SUBJECT_LIST,get_slice = False):
print('Parallel Data Processing')
y_train = np.zeros((examplesPer,17))
X_train = np.zeros((examplesPer,ts,size_1,size_2,1))
for i in prange(examplesPer):
output = np.zeros((ts,size_1,size_2,1))
index=np.where(y_index==SUBJECT_LIST[i])
ff = y_array[index]
#ff = ff.values.reshape(17)
exampleY = ff
output[0:ts,:,:,0] = tsa.read_data(INPUT_FOLDER+'/'+SUBJECT_LIST[i]+'.aps').transpose()
X_train[i,:,:,:,:] = output
y_train[i,:] = exampleY
if get_slice:
X_train = X_train[:,0,:,:,:]
print('DATA Prep : Done')
return X_train,y_train
X_train,y_train = transfrom_data(SUBJECT_LIST)
print("X_train shape: ",X_train.shape)
print("y_train shape: ",y_train.shape)
print('Saving X')
np.save('tsa_datasets/tsa-tensors/X_prep.npy', X_train)
print('Saving y')
np.save('tsa_datasets/tsa-tensors/y_prep.npy', y_train)
## Get Test Data
print('Getting Test Data from Submission file')
submission = pd.read_csv('tsa_datasets/stage1/stage1_sample_submission.csv')
submission['Subject'], submission['Zone'] = submission['Id'].str.split('_',1).str
TEST_SUBJECT_LIST = submission['Subject'].unique()
## Transform test data into a tensor
@jit( #__________________ a list of signatures for prepared alternative code-paths, to avoid a deferred lazy-compilation if undefined
nopython = False, #__________________ forces the function to be compiled in nopython mode. If not possible, compilation will raise an error.
nogil = True, #__________________ tries to release the global interpreter lock inside the compiled function. The GIL will only be released if Numba can compile the function in nopython mode, otherwise a compilation warning will be printed.
cache = False, #__________________ enables a file-based cache to shorten compilation times when the function was already compiled in a previous invocation. The cache is maintained in the __pycache__ subdirectory of the directory containing the source file.
forceobj = False, #__________________ forces the function to be compiled in object mode. Since object mode is slower than nopython mode, this is mostly useful for testing purposes.
locals = {} #__________________ a mapping of local variable names to Numba Types.
) #____________________# [_v41] ZERO <____ TEST *ALL* CALLED sub-func()-s to @.jit() too >>>>>>>>>>>>>>>>>>>>> [DONE]
def transform_test_data(test_subjects_list,get_slice = False):
print("Transforming Test Data")
test_examples= len(test_subjects_list)
X_test = np.zeros((test_examples,ts,size_1,size_2,1))
for i in prange(0,test_examples):
#initialize a training example of max_num_time_steps,im_size,im_size
output = np.zeros((ts,size_1,size_2,1))
#sum up the outputs for new output
output[0:16,:,:,0] = tsa.read_data(INPUT_FOLDER+'/'+TEST_SUBJECT_LIST[i]+'.aps').transpose()
X_test[i,:,:,:,:] = output
if get_slice:
X_test = X_test[:,0,:,:,:]
return X_test
X_test = transform_test_data(TEST_SUBJECT_LIST)
print("X_test shape: ",X_test.shape)
print('Saving X_test')
np.save('tsa_datasets/tsa-tensors/X_test.npy', X_test)
## Get tensor with single image from each subject
X_train_sliced,y_train = transfrom_data(SUBJECT_LIST,get_slice=True)
print("X_train_sliced shape: ",X_train_sliced.shape)
print('Saving X w/ slice ')
np.save('tsa_datasets/tsa-tensors/X_prep_sliced.npy', X_train_sliced)
X_test_sliced = transform_test_data(TEST_SUBJECT_LIST,get_slice=True)
print("X_test_sliced shape: ",X_test_sliced.shape)
print('Saving X_test_sliced')
np.save('tsa_datasets/tsa-tensors/X_test_sliced.npy', X_test_sliced)