-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathannotated.hs
227 lines (187 loc) · 8.83 KB
/
annotated.hs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
{-# LANGUAGE GADTs #-}
import Debug.Trace
-- Define the language
data Exp where
Fun :: Var -> Exp -> Exp
App :: Exp -> Exp -> Exp
Constant :: Value -> Exp
Plus :: Exp -> Exp -> Exp
Minus :: Exp -> Exp -> Exp
Times :: Exp -> Exp -> Exp
Divide :: Exp -> Exp -> Exp
Variable :: Int -> [String] -> Exp
Not :: Exp -> Exp
And :: Exp -> Exp -> Exp
Or :: Exp -> Exp -> Exp
Branch :: Exp -> Exp -> Exp -> Exp
data Value = VBool' Bool' | VInt' Int' | VInt Int | VBool Bool | VFunction (Value -> Value)
--Custom datatypes. These will support ad-hoc polymorphism alongside their usual counterparts below.
data Int' = Zero | Succ Int' | Pred Int'
deriving (Show, Eq)
data Bool' = True' | False'
deriving (Show, Eq)
data Parity = P | S
instance Show Value where
show (VInt x) = show x
show (VInt' x) = show x
show (VBool x) = show x
show (VBool' x) = show x
show _ = "<Function>"
data Var = Var Int [String]
deriving (Eq, Show)
-- reducer, reduce, expand and simplify reduce any Int' to a canonical form. This solution only uses the List datatype provided by Haskell.
reducer :: Int' -> Int'
reducer Zero = Zero
reducer (Succ x) = case x of
(Succ y) -> Succ (reducer x)
(Pred y) -> reducer y
Zero -> Succ Zero
reducer (Pred x) = case x of
(Succ y) -> reducer y
(Pred y) -> Pred (reducer x)
Zero -> Pred Zero
expand :: [Parity] -> Int' -> Int'
expand [] x = x
expand (P:rest) x = expand rest (Pred x)
expand (S:rest) x = expand rest (Succ x)
reduce :: [Parity] -> (Int' -> Int') -> Int' -> Int'
--base cases
reduce [] reducer Zero = Zero
reduce [] reducer (Succ x) = reduce (S:[]) reducer x
reduce [] reducer (Pred x) = reduce (P:[]) reducer x
reduce (S:rest) reducer Zero = expand rest (Succ Zero)
reduce (P:rest) reducer Zero = expand rest (Pred Zero)
--inductive cases
reduce (S:rest) reducer (Pred x) = reduce rest reducer x
reduce (P:rest) reducer (Succ x) = reduce rest reducer x
reduce (S:rest) reducer (Succ x) = reduce (S:S:rest) reducer x
reduce (P:rest) reducer (Pred x) = reduce (P:P:rest) reducer x
simplify :: Int' -> Int'
simplify x = reduce [] reducer x
-- makelist', reduce', expand', simplify' reduce any Int' to canonical form. This alternative solution uses the List and Int types in Haskell.
makelist' :: Int' -> [Char]
makelist' Zero = []
makelist' (Succ x) = 'S':(makelist' x)
makelist' (Pred x) = 'P':(makelist' x)
reduce' :: [Char] -> Int
reduce' [] = 0
reduce' ('S':rest) = 1+(reduce' rest)
reduce' ('P':rest) = (reduce' rest) - 1
expand' :: Int -> Int'
expand' n
| n==0 = Zero
| n>0 = Succ (expand' (n-1))
| n<0 = Pred (expand' (n+1))
simplify' :: Int' -> Int'
simplify' x = expand' (reduce' (makelist' x))
-- provide operations for Int's. Int's with these operations form a ring isomorphic to the integers. It might be fun to implement the field of fractions.
add' :: Int' -> Int' -> Int'
add' x Zero = simplify x
add' x (Succ y) = simplify (Succ (add' (x) (y)))
add' x (Pred y) = simplify (Pred (add' x y))
minus' :: Int' -> Int' -> Int'
minus' x Zero = simplify x
minus' x (Succ y) = simplify (Pred (minus' (x) (y)))
minus' x (Pred y) = simplify (Succ (minus' x y))
times' :: Int' -> Int' -> Int'
times' x Zero = Zero
times' x (Succ y) = simplify (add' x (times' x y))
times' x (Pred y) = simplify (minus' (times' x y) x)
-- provide operations for Bool'. This gives join, meet and complementation.
and' :: Bool' -> Bool' -> Bool'
and' True' True' = True'
and' _ _ = False'
or' :: Bool' -> Bool' -> Bool'
or' False' False' = False'
or' _ _ = True'
not' :: Bool' -> Bool'
not' True' = False'
not' False' = True'
--Functions to extract Int's and Bool's from the Value wrapper. Along with translateint and translatebool below, this allows me to map customtypes to their usual counterparts, for the purposes of the talk.
unwrapint :: Value -> Int'
unwrapint x = case x of
(VInt' Zero) -> Zero
(VInt' (Succ x)) -> Succ (x)
(VInt' (Pred x)) -> Pred (x)
unwrapbool :: Value -> Bool'
unwrapbool x = case x of
(VBool' True') -> True'
(VBool' False') -> False'
translateint :: Int' -> Int
translateint Zero = 0
translateint (Succ x) = (translateint x) + 1
translateint (Pred x) = (translateint x) - 1
translatebool :: Bool' -> Bool
translatebool True' = True
translatebool False' = not (translatebool (not' False'))
-- just as a comment, eval is a functor!
eval :: Exp -> Value
eval (Constant x) = x
eval (Plus x y) = case (eval x, eval y) of
(VInt x, VInt y) -> VInt (x+y)
(VInt' x, VInt' y) -> VInt' (add' (simplify x) (simplify y))
(VInt _, VInt' _) -> error "Incompatible argument types!"
(VInt' _, VInt _) -> error "Incompatible argument types!"
_ -> error "Arguments must be Ints or Int's!"
eval (Minus x y) = case (eval x, eval y) of
(VInt x, VInt y) -> VInt (x-y)
(VInt' x, VInt' y) -> VInt' (minus' (simplify x) (simplify y))
(VInt _, VInt' _) -> error "Incompatible argument types!"
(VInt' _, VInt _) -> error "Incompatible argument types!"
_ -> error "Arguments must be Ints!"
eval (Times x y) = case (eval x, eval y) of
(VInt x, VInt y) -> VInt (x*y)
(VInt' x, VInt' y) -> VInt' (times' (simplify x) (simplify y))
(VInt _, VInt' _) -> error "Incompatible argument types!"
(VInt' _, VInt _) -> error "Incompatible argument types!"
_ -> error "Arguments must be Ints or Int's!"
eval (Divide x y) = case (eval x, eval y) of
(VInt x, VInt y) -> if (y/=0) then VInt (div x y) else error "Division by zero!"
(VInt' x, VInt' y) -> error "Division not defined on Int's!"
(VInt _, VInt' _) -> error "Incompatible argument types!"
(VInt' _, VInt _) -> error "Incompatible argument types!"
_ -> error "Arguments must be integers!"
eval (Not x) = case (eval x) of
(VBool x) -> VBool (not x)
(VBool' x) -> VBool' (not' x)
_ -> error "Not Boolean!"
eval (And x y) = case (eval x, eval y) of
(VBool x, VBool y) -> VBool(x && y)
(VBool' x, VBool' y) -> VBool' (and' x y)
_ -> error "Not Boolean!"
eval (Or x y) = case (eval x, eval y) of
(VBool x, VBool y) -> VBool(x || y)
(VBool' x, VBool' y) -> VBool' (or' x y)
_ -> error "Not Boolean!"
eval (Branch x y z) = case (eval x, eval y, eval z) of
(VBool x, this, that) -> if (x==True) then this else that
(VBool' x, this, that) -> if (x==True') then this else that
_ -> error "Condition must evaluate to Bool or Bool'!"
eval (App first second) = case (eval first) of
(VFunction f) -> trace("evaluating an App") f (eval second)
_ -> error "First argument is not a function!"
eval (Fun (Var v annotation) f) = case annotation of
(first:second) -> trace("evaluating a Fun") VFunction (\x -> eval(subst f (Var v (first:[])) x))
_ -> error "Types don't match"
subst :: Exp -> Var -> Value -> Exp
subst c@(Constant _) _ _ = trace("subst a constant") c
subst (Variable v annotation) (Var v' annotation') x = if (annotation==annotation') then (if (v==v') then trace("made a substitution for a variable") (Constant x) else trace("variables don't match, skippped subs") Variable v annotation) else trace("annotations didn't match") error "Incompatible types!!!"
subst (Plus m n) v x = trace("subst a Plus") Plus (subst m v x) (subst n v x)
subst (Minus m n) v x = trace("subst a Minus") Minus (subst m v x) (subst n v x)
subst (Times m n) v x = trace("subst a Times") Times (subst m v x) (subst n v x)
subst (Divide m n) v x = trace("subst a Divide") Divide (subst m v x) (subst n v x)
subst (Not m) v x = trace("subst a Not") Not (subst m v x)
subst (And m n) v x = trace("subst a And") And (subst m v x) (subst n v x)
subst (Or m n) v x = trace("subst a Or") Or (subst m v x) (subst n v x)
subst (App m n) v x = trace("subst an App") App (subst m v x) (subst n v x)
subst (Fun (Var v' annotation') b) (Var v annotation) x = if (annotation==annotation') then (if (v==v') then trace("subst an unbound variable") (Fun (Var v' annotation') b) else trace("skipped subst an unbound variable") (Fun (Var v' annotation') (subst b (Var v annotation) x))) else trace("annotations mismatched") error "Not comp types"
plusone = Fun (Var 1 ["Int"]) (Plus (Variable 1 ["Int"]) (Constant (VInt 1)))
timesfour = Fun (Var 1 ["Int"]) (Times (Variable 1 ["Int"]) (Constant (VInt' (Succ (Succ (Succ (Succ Zero)))))))
y=Fun (Var 1 ["Int"]) (App ((Fun (Var 2 ["Int"]) (App (Variable 1 ["Int"]) (App (Variable 2 ["Int"]) (Variable 2 ["Int"]))))) (Fun (Var 3 ["Int"]) (App (Variable 1 ["Int"]) (App (Variable 3 ["Int"]) (Variable 3 ["Int"])))))
test = translateint (unwrapint (eval (Times (Constant (VInt' (Succ (Pred (Succ (Pred (Succ (Succ Zero)))))))) (Constant (VInt' (Pred Zero))))))
twice = Fun (Var 1 ["Int", "Int"]) (
Fun (Var 2 ["Int"]) (
App (Variable 1 ["Int","Int"]) (
App (Variable 1 ["Int","Int"]) (
(Variable 2 ["Int"])))))
-- basically the problem here is parsing the type annotations correctly and passing them along. This needs to be done more carefully.