-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathdata_utils.py
343 lines (280 loc) · 12.4 KB
/
data_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
import os
import random
import h5py
import matplotlib.pyplot as plt
import numpy as np
import torch
import torchvision
from torch.utils import data
from torch.utils.data.sampler import BatchSampler
from torchvision import transforms
from tqdm.notebook import tqdm
from histaugan.model import MD_multi
# ------------
# dataset classes for the usage with patches in hdf5 files
# ------------
class Center0Dataset(data.Dataset):
"""Adapted from https://towardsdatascience.com/hdf5-datasets-for-pytorch-631ff1d750f5
Represents an abstract HDF5 dataset.
Input params:
file_path: Path to the folder containing the dataset (one or multiple HDF5 files).
load_data: If True, loads all the data immediately into RAM. Use this if
the dataset is fits into memory. Otherwise, leave this at false and
the data will load lazily.
data_cache_size: Number of HDF5 files that can be cached in the cache (default=3).
transform: PyTorch transform to apply to every data instance (default=None).
"""
def __init__(self, file_path, phase, balanced=False, load_data=True, data_cache_size=3, transform=transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])):
super().__init__()
self.data_info = []
self.data_cache = {}
self.data_cache_size = data_cache_size
self.transform = transform
assert phase in [
'train', 'val'], 'phase is not valid. should be either train or val'
self.phase = phase
if self.phase == 'val':
self.slides = ['patient_015_node_1', 'patient_015_node_2']
else:
self.slides = ['patient_004_node_4', 'patient_009_node_1', 'patient_010_node_4', 'patient_012_node_0',
'patient_016_node_1', 'patient_017_node_1', 'patient_017_node_2', 'patient_017_node_4']
self.data = {
'patches': [],
'tumor_ratio': [],
}
assert os.path.isfile(file_path)
with h5py.File(file_path, 'r') as h5_file:
# Walk through all groups, extracting datasets
for gname, group in h5_file.items():
if gname in self.slides:
for dname, ds in group.items():
if dname == 'coordinates':
continue
else:
self.data[dname].append(torch.from_numpy(ds[:]))
else:
continue
self.data['patches'] = torch.cat(
self.data['patches']).permute(0, 3, 1, 2)
self.data['tumor_ratio'] = torch.cat(
self.data['tumor_ratio']).unsqueeze(-1)
def __getitem__(self, index): # ok
# get data
x = self.data['patches'][index] # data is stored in ByteTensors
x = x.float().div_(255.)
if self.transform:
x = self.transform(x)
# get label
y = self.data['tumor_ratio'][index]
# set labels larger than 0 to 1, i.e. tumor positive
y = (y >= 0.01).float()
return x, y
def __len__(self):
return len(self.data['patches'])
class OneCenterLoad(data.Dataset):
"""Adapted from https://towardsdatascience.com/hdf5-datasets-for-pytorch-631ff1d750f5
Represents an abstract HDF5 dataset.
Input params:
file_path: Path to the folder containing the dataset (one or multiple HDF5 files).
load_data: If True, loads all the data immediately into RAM. Use this if
the dataset is fits into memory. Otherwise, leave this at false and
the data will load lazily.
data_cache_size: Number of HDF5 files that can be cached in the cache (default=3).
transform: PyTorch transform to apply to every data instance (default=None).
"""
def __init__(self, data_dir, center, phase, transform=transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]), norm=None):
super().__init__()
self.data_dir = data_dir
self.center = center
assert phase in ['train', 'val'], 'phase is not valid. should be either train or val'
self.phase = phase
self.transform = transform
self.norm = norm
self.val_slides = [
'patient_015_node_1', 'patient_015_node_2',
'patient_020_node_2', 'patient_020_node_4',
'patient_046_node_3', 'patient_046_node_4',
'patient_075_node_4',
'patient_080_node_1', 'patient_088_node_1'
]
self.data = {
'patches': [],
'tumor_ratio': [],
}
file_path = self.data_dir + f'center{self.center}_level2.hdf5'
assert os.path.isfile(file_path)
with h5py.File(file_path, 'r') as h5_file:
# Walk through all groups, extracting datasets
for gname, group in h5_file.items():
if self.phase == 'train':
if gname not in self.val_slides:
self.data['patches'].append(
torch.from_numpy(group['patches'][:]))
self.data['tumor_ratio'].append(
torch.from_numpy(group['tumor_ratio'][:]))
else:
if gname in self.val_slides:
self.data['patches'].append(
torch.from_numpy(group['patches'][:]))
self.data['tumor_ratio'].append(
torch.from_numpy(group['tumor_ratio'][:]))
self.data['patches'] = torch.cat(
self.data['patches']).permute(0, 3, 1, 2)
self.data['tumor_ratio'] = torch.cat(
self.data['tumor_ratio']).unsqueeze(-1)
def __getitem__(self, index):
# get data
x = self.data['patches'][index] # data is stored in ByteTensors
if self.norm:
# output np.ndarray of dtype('uint8')
x = self.norm.transform(x.permute(1, 2, 0).numpy())
x = torch.from_numpy(x).permute(2, 0, 1)
x = x.float().div_(255.)
if self.transform:
x = self.transform(x)
# get label
y = self.data['tumor_ratio'][index]
# set labels larger than 0.01 to 1, i.e. tumor positive
y = (y >= 0.01).float()
return x, y
def __len__(self):
return len(self.data['patches'])
class MultipleCentersSeq(data.Dataset):
"""Adapted from https://towardsdatascience.com/hdf5-datasets-for-pytorch-631ff1d750f5
Represents an abstract HDF5 dataset.
Input params:
file_path: Path to the folder containing the dataset (one or multiple HDF5 files).
load_data: If True, loads all the data immediately into RAM. Use this if
the dataset is fits into memory. Otherwise, leave this at false and
the data will load lazily.
data_cache_size: Number of HDF5 files that can be cached in the cache (default=3).
transform: PyTorch transform to apply to every data instance (default=None).
"""
def __init__(self, data_dir, center_indices, transform=transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]), norm=None):
super().__init__()
self.data_dir = data_dir
for i in center_indices:
assert i in range(
5), 'center_index is not valid. should be in range(5)'
self.center_indices = center_indices
self.transform = transform
self.norm = norm
self.file_paths = [self.data_dir +
f'center{c}_level2.hdf5' for c in self.center_indices]
for f in self.file_paths:
assert os.path.isfile(f)
self.slide_names = []
self.slide_lengths = []
for f in self.file_paths:
with h5py.File(f, 'r') as h5_file:
for gname, group in h5_file.items():
self.slide_names.append((f, gname))
self.slide_lengths.append(
len(h5_file[gname]['tumor_ratio']))
self.slide_indices = [sum(self.slide_lengths[:i+1])
for i in range(len(self.center_indices)*10-1)]
self.data = {
'patches': [],
'tumor_ratio': [],
}
self.load_data(*self.slide_names[0])
self.shift = 0
def __getitem__(self, index):
if index in self.slide_indices:
slide = self.slide_indices.index(index)
self.load_data(*self.slide_names[slide+1])
self.shift = self.slide_indices[slide]
# get data
# data is stored in ByteTensors
x = self.data['patches'][index-self.shift]
if self.norm:
# output np.ndarray of dtype('uint8')
x = self.norm.transform(x.permute(1, 2, 0).numpy())
x = torch.from_numpy(x).permute(2, 0, 1)
x = x.float() / 255.
if self.transform:
x = self.transform(x)
# get label
y = self.data['tumor_ratio'][index-self.shift]
# set labels larger than 0 to 1, i.e. tumor positive
y = (y >= 0.01).float()
return x, y
def __len__(self):
return sum(self.slide_lengths)
def load_data(self, f, slide_name):
self.data = {
'patches': [],
'tumor_ratio': [],
}
with h5py.File(f, 'r') as h5_file:
for dname, ds in h5_file[slide_name].items():
if dname == 'coordinates':
continue
else:
self.data[dname].append(torch.from_numpy(ds[:]))
self.data['patches'] = torch.cat(self.data['patches']).permute(0, 3, 1, 2)
self.data['tumor_ratio'] = torch.cat(self.data['tumor_ratio']).unsqueeze(-1)
class TestCenterDataset(data.Dataset):
"""Adapted from https://towardsdatascience.com/hdf5-datasets-for-pytorch-631ff1d750f5
Represents an abstract HDF5 dataset.
Input params:
file_path: Path to the folder containing the dataset (one or multiple HDF5 files).
load_data: If True, loads all the data immediately into RAM. Use this if
the dataset is fits into memory. Otherwise, leave this at false and
the data will load lazily.
data_cache_size: Number of HDF5 files that can be cached in the cache (default=3).
transform: PyTorch transform to apply to every data instance (default=None).
"""
def __init__(self, data_dir, center_index, transform=transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])):
super().__init__()
assert center_index in range(5), 'center_index is not valid. should be in range(5)'
self.data_dir = data_dir
self.center_index = center_index
self.transform = transform
self.file_path = self.data_dir + \
f'center{self.center_index}_level2.hdf5'
assert os.path.isfile(self.file_path)
self.slide_names = []
self.slide_lengths = []
with h5py.File(self.file_path, 'r') as h5_file:
for gname, group in h5_file.items():
self.slide_names.append(gname)
self.slide_lengths.append(len(h5_file[gname]['tumor_ratio']))
self.slide_indices = [sum(self.slide_lengths[:i+1]) for i in range(9)]
self.data = {
'patches': [],
'tumor_ratio': [],
}
self.load_slide(self.slide_names[0])
self.shift = 0
def __getitem__(self, index):
if index in self.slide_indices:
slide = self.slide_indices.index(index)
self.load_slide(self.slide_names[slide+1])
self.shift = self.slide_indices[slide]
# get data
# data is stored in ByteTensors
x = self.data['patches'][index-self.shift]
x = x.float() / 255.
if self.transform:
x = self.transform(x)
# get label
y = self.data['tumor_ratio'][index-self.shift]
# set labels larger than 0 to 1, i.e. tumor positive
y = (y >= 0.01).float()
return x, y
def __len__(self):
return sum(self.slide_lengths)
def load_slide(self, slide_name):
self.data = {
'patches': [],
'tumor_ratio': [],
}
with h5py.File(self.file_path, 'r') as h5_file:
for dname, ds in h5_file[slide_name].items():
if dname == 'coordinates':
continue
else:
self.data[dname].append(torch.from_numpy(ds[:]))
self.data['patches'] = torch.cat(self.data['patches']).permute(0, 3, 1, 2)
self.data['tumor_ratio'] = torch.cat(self.data['tumor_ratio']).unsqueeze(-1)