-
Notifications
You must be signed in to change notification settings - Fork 23
/
demo_parallel.cpp
646 lines (597 loc) · 22.8 KB
/
demo_parallel.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
//===----------------------------------------------------------------------===//
//
// Copyright (C) 2023 Sophgo Technologies Inc. All rights reserved.
//
// TPU-MLIR is licensed under the 2-Clause BSD License except for the
// third-party components.
//
//===----------------------------------------------------------------------===//
#include "bmruntime_interface.h"
#include <iostream>
#include <cstdlib>
#include <vector>
#include <assert.h>
#include <chrono>
#include <algorithm>
#include "memory.h"
#include "tokenizer.h"
#include <getopt.h>
static const uint16_t BF16_NEG_10000 = 0xC61C; // -9984 by bfloat16
class QwenChat {
public:
void init(const std::vector<int> &devices,
const std::string &model_path,
const std::string &tokenizer_path);
void chat();
void deinit();
private:
void answer(const std::string &input_str);
int forward_first(std::vector<int> &tokens);
int forward_next(int cur_token);
void net_launch(const std::string &net_name,
std::vector<bm_tensor_t> &inputs,
std::vector<bm_tensor_t> &outputs,
int stage_idx = 0);
void load_tiktoken(const std::string &tokenizer_path);
// void tokenizer_encode(const std::string &input_str, std::vector<int> &tokens);
private:
std::vector<bm_handle_t> handles;
bm_handle_t bm_handle;
void *p_bmrt;
std::string name_embed;
std::string name_embed_cache;
std::string name_lm;
std::vector<std::string> name_blocks;
std::vector<std::string> name_blocks_cache;
const bm_net_info_t *net_embed;
const bm_net_info_t *net_embed_cache;
const bm_net_info_t *net_lm;
std::vector<const bm_net_info_t *> net_blocks;
std::vector<const bm_net_info_t *> net_blocks_cache;
std::vector<bm_tensor_t> inputs_embed, inputs_embed_cache;
std::vector<bm_tensor_t> hidden_states, hidden_states_cache;
std::vector<bm_tensor_t> inputs_pid, next_pid;
std::vector<bm_tensor_t> inputs_attention, next_attention;
std::vector<std::vector<bm_tensor_t>> past_keys, past_values;
std::vector<bm_tensor_t> present_key_cache, present_value_cache;
std::vector<bm_tensor_t> inputs_lm, outputs_lm;
int device_num;
int token_length;
int SEQLEN; // read from bmodel
int NUM_LAYERS; // read from bmodel
bool io_alone;
bool is_dynamic;
std::unique_ptr<QwenTokenizer> tk;
std::vector<std::string> history;
};
void QwenChat::load_tiktoken(const std::string &tokenizer_path) {
printf("Load %s ... \n", tokenizer_path.c_str());
tk = std::make_unique<QwenTokenizer>(tokenizer_path);
}
void QwenChat::net_launch(const std::string &net_name,
std::vector<bm_tensor_t> &inputs,
std::vector<bm_tensor_t> &outputs,
int stage_idx) {
bool ret = bmrt_launch_tensor_ex(
p_bmrt, net_name.c_str(), inputs.data(), inputs.size(), outputs.data(),
outputs.size(), true, false);
assert(ret);
bm_thread_sync(bm_handle);
}
void QwenChat::init(const std::vector<int> &devices,
const std::string &model_path,
const std::string &tokenizer_path) {
load_tiktoken(tokenizer_path);
// request bm_handle
device_num = devices.size();
std::cout << "Device [ ";
for (auto d : devices) {
std::cout << d << " ";
}
std::cout << "] loading ....\n";
for (auto d : devices) {
bm_handle_t h;
bm_status_t status = bm_dev_request(&h, d);
assert(BM_SUCCESS == status);
handles.push_back(h);
}
bm_handle = handles[0];
// create bmruntime
p_bmrt = bmrt_create_ex(handles.data(), handles.size());
assert(NULL != p_bmrt);
// load bmodel by file
printf("Model[%s] loading ....\n", model_path.c_str());
bool ret = bmrt_load_bmodel(p_bmrt, model_path.c_str());
assert(true == ret);
printf("Done!\n");
// embed, lm_head
name_embed = "embedding";
name_embed_cache = "embedding_cache";
name_lm = "lm_head";
net_embed = bmrt_get_network_info(p_bmrt, name_embed.c_str());
net_embed_cache = bmrt_get_network_info(p_bmrt, name_embed_cache.c_str());
net_lm = bmrt_get_network_info(p_bmrt, name_lm.c_str());
int num_dims = net_embed->stages[0].input_shapes[0].num_dims;
SEQLEN = net_embed->stages[0].input_shapes[0].dims[num_dims - 1]; // real seqlen
auto num_nets = bmrt_get_network_number(p_bmrt);
NUM_LAYERS = (num_nets - 3) / 2;
// blocks
name_blocks.resize(NUM_LAYERS);
name_blocks_cache.resize(NUM_LAYERS);
net_blocks.resize(NUM_LAYERS);
net_blocks_cache.resize(NUM_LAYERS);
for (int i = 0; i < NUM_LAYERS; i++) {
name_blocks[i] = "block_" + std::to_string(i);
name_blocks_cache[i] = "block_cache_" + std::to_string(i);
net_blocks[i] = bmrt_get_network_info(p_bmrt, name_blocks[i].c_str());
net_blocks_cache[i] =
bmrt_get_network_info(p_bmrt, name_blocks_cache[i].c_str());
}
// net device mem
hidden_states.resize(device_num);
hidden_states_cache.resize(device_num);
inputs_embed.resize(device_num);
inputs_embed_cache.resize(device_num);
int out_num = net_blocks[0]->output_num / device_num;
int out_num_cache = net_blocks_cache[0]->output_num / device_num;
for (int i = 0; i < device_num; ++i) {
bmrt_tensor_with_device(
&hidden_states[i],
net_blocks[0]->stages[0].output_mems[0 + i * out_num],
net_blocks[0]->output_dtypes[0 + i * out_num],
net_blocks[0]->stages[0].output_shapes[0 + out_num]);
bmrt_tensor_with_device(
&hidden_states_cache[i],
net_blocks_cache[0]->stages[0].output_mems[0 + i * out_num_cache],
net_blocks_cache[0]->output_dtypes[0 + i * out_num_cache],
net_blocks_cache[0]->stages[0].output_shapes[0 + out_num_cache]);
bmrt_tensor_with_device(
&inputs_embed[i],
net_embed->stages[0].input_mems[i],
net_embed->input_dtypes[i],
net_embed->stages[0].input_shapes[i]);
bmrt_tensor_with_device(
&inputs_embed_cache[i],
net_embed_cache->stages[0].input_mems[i],
net_embed_cache->input_dtypes[i],
net_embed_cache->stages[0].input_shapes[i]);
}
inputs_pid.resize(device_num);
inputs_attention.resize(device_num);
next_pid.resize(device_num);
next_attention.resize(device_num);
int in_num = net_blocks[0]->input_num / device_num;
int in_num_cache = net_blocks_cache[0]->input_num / device_num;
for (int i = 0; i < device_num; ++i) {
ret = bmrt_tensor_ex(
&inputs_pid[i], p_bmrt,
net_blocks[0]->input_loc_devices[1 + i * in_num],
net_blocks[0]->input_dtypes[1 + i * in_num],
net_blocks[0]->stages[0].input_shapes[1 + i * in_num]);
assert(true == ret);
ret = bmrt_tensor_ex(
&inputs_attention[i], p_bmrt,
net_blocks[0]->input_loc_devices[2 + i * in_num],
net_blocks[0]->input_dtypes[2 + i * in_num],
net_blocks[0]->stages[0].input_shapes[2 + i * in_num]);
assert(true == ret);
ret = bmrt_tensor_ex(
&next_pid[i], p_bmrt,
net_blocks_cache[0]->input_loc_devices[1 + i * in_num_cache],
net_blocks_cache[0]->input_dtypes[1 + i * in_num_cache],
net_blocks_cache[0]->stages[0].input_shapes[1 + i * in_num_cache]);
assert(true == ret);
ret = bmrt_tensor_ex(
&next_attention[i], p_bmrt,
net_blocks_cache[0]->input_loc_devices[2 + i * in_num_cache],
net_blocks_cache[0]->input_dtypes[2 + i * in_num_cache],
net_blocks_cache[0]->stages[0].input_shapes[2 + i * in_num_cache]);
assert(true == ret);
}
is_dynamic = net_blocks[0]->is_dynamic;
auto addr_mode = net_blocks_cache[0]->addr_mode;
io_alone = (addr_mode == 1);
past_keys.resize(NUM_LAYERS);
past_values.resize(NUM_LAYERS);
if (io_alone) {
for (int i = 0; i < NUM_LAYERS; i++) {
past_keys[i].resize(device_num);
past_values[i].resize(device_num);
auto &net = net_blocks_cache[i];
for (int j = 0; j < device_num; j++) {
bmrt_tensor_with_device(
&past_keys[i][j],
net->stages[0].input_mems[3 + j * in_num_cache],
net->input_dtypes[3 + j * in_num_cache],
net->stages[0].input_shapes[3 + j * in_num_cache]);
bmrt_tensor_with_device(
&past_values[i][j],
net->stages[0].input_mems[4 + j * in_num_cache],
net->input_dtypes[4 + j * in_num_cache],
net->stages[0].input_shapes[4 + j * in_num_cache]);
}
}
} else {
for (int i = 0; i < NUM_LAYERS; i++) {
past_keys[i].resize(device_num);
past_values[i].resize(device_num);
auto &net = net_blocks_cache[i];
for (int j = 0; j < device_num; j++) {
ret = bmrt_tensor_ex(
&past_keys[i][j], p_bmrt,
net->input_loc_devices[3 + j * in_num_cache],
net->input_dtypes[3 + j * in_num_cache],
net->stages[0].input_shapes[3 + j * in_num_cache]);
assert(true == ret);
ret = bmrt_tensor_ex(
&past_values[i][j], p_bmrt,
net->input_loc_devices[4 + j * in_num_cache],
net->input_dtypes[4 + j * in_num_cache],
net->stages[0].input_shapes[4 + j *in_num_cache]);
assert(true == ret);
}
}
}
int value = 0;
for (int i = 0; i < NUM_LAYERS; i++) {
for (int j = 0; j < device_num; j++) {
bool status = bm_memset_device_ext(handles[j], &value, 1, past_keys[i][j].device_mem);
assert(BM_SUCCESS == status);
status = bm_memset_device_ext(handles[j], &value, 1, past_values[i][j].device_mem);
assert(BM_SUCCESS == status);
}
}
for (int j = 0; j < device_num; j++) {
bool status = bm_memset_device_ext(handles[j], &value, 1, hidden_states[j].device_mem);
assert(BM_SUCCESS == status);
status = bm_memset_device_ext(handles[j], &value, 1, hidden_states_cache[j].device_mem);
assert(BM_SUCCESS == status);
}
present_key_cache.resize(device_num);
present_value_cache.resize(device_num);
inputs_lm.resize(device_num);
outputs_lm.resize(device_num);
for (int i = 0; i < device_num; ++i) {
present_key_cache[i] = past_keys[0][i];
present_value_cache[i] = past_values[0][i];
present_key_cache[i].shape.dims[1] = 1;
present_value_cache[i].shape.dims[1] = 1;
ret = bmrt_tensor_ex(&inputs_lm[i], p_bmrt, i, net_lm->input_dtypes[0],
net_lm->stages[0].input_shapes[0]);
assert(true == ret);
ret = bmrt_tensor_ex(&outputs_lm[i], p_bmrt, i, net_lm->output_dtypes[0],
net_lm->stages[0].output_shapes[0]);
assert(true == ret);
}
}
void QwenChat::deinit() {
for (int i = 0; i < device_num; ++i) {
bm_free_device(handles[i], inputs_pid[i].device_mem);
bm_free_device(handles[i], next_pid[i].device_mem);
bm_free_device(handles[i], inputs_attention[i].device_mem);
bm_free_device(handles[i], next_attention[i].device_mem);
bm_free_device(handles[i], inputs_lm[i].device_mem);
bm_free_device(handles[i], outputs_lm[i].device_mem);
}
if (!io_alone) {
for (int i = 0; i < NUM_LAYERS; i++) {
for (int j = 0; j < device_num; j++) {
bm_free_device(handles[j], past_keys[i][j].device_mem);
bm_free_device(handles[j], past_values[i][j].device_mem);
}
}
}
bmrt_destroy(p_bmrt);
for (auto h : handles) {
bm_dev_free(h);
}
}
int QwenChat::forward_first(std::vector<int> &tokens) {
std::vector<int> input_ids(SEQLEN, 0);
std::vector<int> position_id(SEQLEN, 0);
std::vector<uint16_t> attention_mask(SEQLEN * SEQLEN, BF16_NEG_10000);
std::copy(tokens.begin(), tokens.end(), input_ids.data());
for (int i = 0; i < token_length; i++) {
position_id[i] = i;
}
if (is_dynamic) {
for (int i = 0; i < token_length; i++) {
for (int j = 0; j < token_length; j++) {
if (j <= i) {
attention_mask[i * token_length + j] = 0;
}
}
}
} else {
for (int i = 0; i < token_length; i++) {
for (int j = 0; j < SEQLEN; j++) {
if (j <= i) {
attention_mask[i * SEQLEN + j] = 0;
}
}
}
}
// forward embeding
std::vector<int> input_nums(device_num, 1);
std::vector<void*> datas(device_num, (void*)input_ids.data());
bmrt_memcpy_s2d_parallel(p_bmrt, inputs_embed.data(), datas.data(),
input_nums.data(), device_num);
auto output_embeds = hidden_states;
for (int i = 0; i < device_num; ++i) {
output_embeds[i].shape = net_embed[0].stages[0].output_shapes[0];
}
auto ret = bmrt_launch_tensor_ex(p_bmrt, name_embed.c_str(),
inputs_embed.data(), inputs_embed.size(),
output_embeds.data(), output_embeds.size(),
true, false);
assert(ret);
bm_thread_sync(bm_handle);
// forward blocks
std::vector<void*> pos_id_datas(device_num, (void*)position_id.data());
std::vector<void*> in_attn_datas(device_num, (void*)attention_mask.data());
bmrt_memcpy_s2d_parallel(p_bmrt, inputs_pid.data(), pos_id_datas.data(),
input_nums.data(), device_num);
bmrt_memcpy_s2d_parallel(p_bmrt, inputs_attention.data(),in_attn_datas.data(),
input_nums.data(), device_num);
auto tmp_hidden_states = hidden_states;
std::vector<bm_tensor_t> inputs_block;
std::vector<bm_tensor_t> outputs_block;
for (int i = 0; i < device_num; ++i) {
tmp_hidden_states[i].shape = net_blocks[0]->stages[0].input_shapes[0];
inputs_block.push_back(tmp_hidden_states[i]);
inputs_block.push_back(inputs_pid[i]);
inputs_block.push_back(inputs_attention[i]);
outputs_block.push_back(tmp_hidden_states[i]);
outputs_block.push_back(past_keys[0][i]);
outputs_block.push_back(past_values[0][i]);
if (is_dynamic) {
int h_bytes = bm_mem_get_device_size(tmp_hidden_states[i].device_mem) / SEQLEN;
bm_set_device_mem(&inputs_block[0 + i * 3].device_mem, h_bytes * token_length,
bm_mem_get_device_addr(tmp_hidden_states[i].device_mem));
int pid_bytes = bm_mem_get_device_size(inputs_pid[i].device_mem) / SEQLEN;
bm_set_device_mem(&inputs_block[1 + i * 3].device_mem, pid_bytes * token_length,
bm_mem_get_device_addr(inputs_pid[i].device_mem));
int mask_bytes = bm_mem_get_device_size(inputs_attention[i].device_mem) / SEQLEN / SEQLEN;
bm_set_device_mem(&inputs_block[2 + i * 3].device_mem, mask_bytes * token_length * token_length,
bm_mem_get_device_addr(inputs_attention[i].device_mem));
inputs_block[0 + i * 3].shape.dims[1] = token_length;
inputs_block[1 + i * 3].shape.dims[1] = token_length;
inputs_block[2 + i * 3].shape.dims[2] = token_length;
inputs_block[2 + i * 3].shape.dims[3] = token_length;
}
}
for (int i = 0; i < NUM_LAYERS; i++) {
for (int j = 0; j < device_num; ++j) {
outputs_block[1 + j * 3] = past_keys[i][j];
outputs_block[2 + j * 3] = past_values[i][j];
}
net_launch(name_blocks[i], inputs_block, outputs_block);
}
int bytes = hidden_states[0].device_mem.size / SEQLEN;
bm_memcpy_d2d_byte(bm_handle, inputs_lm[0].device_mem, 0,
hidden_states[0].device_mem, (token_length - 1) * bytes,
bytes);
ret = bmrt_launch_tensor_ex(p_bmrt, name_lm.c_str(), &inputs_lm[0], 1,
&outputs_lm[0], 1,
true, false);
assert(ret);
bm_thread_sync(bm_handle);
int token = 0;
bm_memcpy_d2s(bm_handle, (void *)&token, outputs_lm[0].device_mem);
return token;
}
int QwenChat::forward_next(int cur_token) {
std::vector<uint16_t> attention_mask(SEQLEN + 1, 0);
for (int i = token_length - 1; i < SEQLEN; i++) {
attention_mask[i] = BF16_NEG_10000;
}
int32_t position_id = token_length - 1;
// embedding
// std::vector<bm_tensor_t> inputs_embed;
std::vector<void*> input_datas;
std::vector<int> input_nums(device_num, 1);
for (int i = 0; i < device_num; ++i) {
// inputs_embed_cache.push_back(outputs_lm[i]); // token_id
// inputs_embed_cache[i].shape = net_embed_cache->stages[0].input_shapes[0];
input_datas.push_back((void*)(&cur_token));
}
bmrt_memcpy_s2d_parallel(p_bmrt, inputs_embed_cache.data(), input_datas.data(),
input_nums.data(), device_num);
auto outputs_embed_cache = hidden_states_cache;
for (int i = 0; i < device_num; ++i) {
outputs_embed_cache[i].shape = net_embed_cache[0].stages[0].output_shapes[0];
}
auto ret = bmrt_launch_tensor_ex(
p_bmrt, name_embed_cache.c_str(), inputs_embed_cache.data(),
inputs_embed_cache.size(), outputs_embed_cache.data(),
outputs_embed_cache.size(), true, false);
assert(ret);
bm_thread_sync(bm_handle);
// blocks
std::vector<void*> attn_datas(device_num, attention_mask.data());
std::vector<void*> pid_datas(device_num, &position_id);
bmrt_memcpy_s2d_parallel(p_bmrt, next_attention.data(), attn_datas.data(),
input_nums.data(), device_num);
bmrt_memcpy_s2d_parallel(p_bmrt, next_pid.data(), pid_datas.data(),
input_nums.data(), device_num);
// WARNING: make inputs_lm device_num
std::vector<bm_tensor_t> embed_1 = hidden_states_cache;
for (int i = 0; i < device_num; ++i) {
embed_1[i].shape = net_blocks_cache[0]->stages[0].input_shapes[0];
}
std::vector<bm_tensor_t> inputs_block;
std::vector<bm_tensor_t> outputs_block;
for (int i = 0; i < device_num; ++i) {
inputs_block.push_back(embed_1[i]);
inputs_block.push_back(next_pid[i]);
inputs_block.push_back(next_attention[i]);
inputs_block.push_back(past_keys[0][i]);
inputs_block.push_back(past_values[0][i]);
outputs_block.push_back(embed_1[i]);
outputs_block.push_back(present_key_cache[i]);
outputs_block.push_back(present_value_cache[i]);
}
for (int i = 0; i < NUM_LAYERS; i++) {
for (int j = 0; j < device_num; ++j) {
inputs_block[3 + j * 5] = past_keys[i][j];
inputs_block[4 + j * 5] = past_values[i][j];
int bytes = bm_mem_get_device_size(past_keys[0][j].device_mem) / SEQLEN;
int token_offset = (token_length - 1) * bytes;
bm_set_device_mem(&outputs_block[1 + j * 3].device_mem, bytes,
bm_mem_get_device_addr(past_keys[i][j].device_mem) + token_offset);
bm_set_device_mem(&outputs_block[2 + j * 3].device_mem, bytes,
bm_mem_get_device_addr(past_values[i][j].device_mem) + token_offset);
}
net_launch(name_blocks_cache[i], inputs_block, outputs_block);
}
ret = bmrt_launch_tensor_ex(
p_bmrt, name_lm.c_str(), &hidden_states_cache[0], 1, &outputs_lm[0], 1,
true, false);
assert(ret);
bm_thread_sync(bm_handle);
int token = 0;
bm_memcpy_d2s(bm_handle, (void *)&token, outputs_lm[0].device_mem);
return token;
}
void QwenChat::chat() {
while (true) {
std::cout << "\nQuestion: ";
std::string input_str;
std::getline(std::cin, input_str);
if (input_str.empty()) {
continue;
}
if (input_str == "exit" || input_str == "quit") {
break;
}
if (input_str == "clear") {
history.clear();
continue;
}
std::cout << "\nAnswer: " << std::flush;
answer(input_str);
std::cout << std::endl;
}
}
void QwenChat::answer(const std::string &input_str) {
int tok_num = 0;
history.emplace_back(std::move(input_str));
auto input_ids = tk->encode_history(history, SEQLEN);
token_length = input_ids.size();
auto time_1 = std::chrono::system_clock::now();
int pre_token = 0;
int token = forward_first(input_ids);
auto time_2 = std::chrono::system_clock::now();
std::string result;
while (token != tk->im_end_id && token_length < SEQLEN) {
std::vector<int> pre_ids = {pre_token};
std::vector<int> ids = {pre_token, token};
auto pre_word = tk->decode(pre_ids);
auto word = tk->decode(ids);
std::string diff = word.substr(pre_word.size());
result += diff;
std::cout << diff << std::flush;
tok_num++;
token_length++;
token = forward_next(token);
}
auto time_3 = std::chrono::system_clock::now();
auto ftl_dur =
std::chrono::duration_cast<std::chrono::microseconds>(time_2 - time_1);
auto tps_dur =
std::chrono::duration_cast<std::chrono::microseconds>(time_3 - time_2);
double tps = tok_num / (tps_dur.count() * 1e-6);
if (token_length >= SEQLEN) {
printf(" ......\nWarning: cleanup early history\n");
}
// double tht = tokens.size() / (tht_dur.count() * 1e-6);
printf("\nFTL:%f s, TPS: %f tokens/s\n", ftl_dur.count() * 1e-6, tps);
history.emplace_back(result);
if (token_length + 128 >= SEQLEN) {
int num = (history.size() + 3) / 4 * 2;
history.erase(history.begin(), history.begin() + num);
}
}
static void split(const std::string &s, const std::string &delim,
std::vector<std::string> &ret) {
size_t last = 0;
size_t index = s.find_first_of(delim, last);
while (index != std::string::npos) {
ret.push_back(s.substr(last, index - last));
last = index + 1;
index = s.find_first_of(delim, last);
}
if (last < s.length()) {
ret.push_back(s.substr(last));
}
}
static std::vector<int> parseCascadeDevices(const std::string &str) {
std::vector<int> devices;
std::vector<std::string> sub_str;
split(str, ",", sub_str);
for (auto &s : sub_str) {
devices.push_back(std::atoi(s.c_str()));
}
return devices;
}
void Usage() {
printf("Usage:\n"
" --help : Show help info.\n"
" --model : Set model path \n"
" --tokenizer : Set tokenizer path \n"
" --devid : Set devices to run for model, e.g. 1,2. if not "
"set, use 0\n");
}
void processArguments(int argc, char *argv[],
std::string &model_path,
std::string &tokenizer_path,
std::vector<int> &devices) {
struct option longOptions[] = {{"model", required_argument, nullptr, 'm'},
{"tokenizer", required_argument, nullptr, 't'},
{"devid", required_argument, nullptr, 'd'},
{"help", no_argument, nullptr, 'h'},
{nullptr, 0, nullptr, 0}};
int optionIndex = 0;
int option;
while ((option = getopt_long(argc, argv, "m:t:d:h:", longOptions,
&optionIndex)) != -1) {
switch (option) {
case 'm':
model_path = optarg;
break;
case 't':
tokenizer_path = optarg;
break;
case 'd':
devices = parseCascadeDevices(optarg);
break;
case 'h':
Usage();
exit(EXIT_SUCCESS);
case '?':
Usage();
exit(EXIT_FAILURE);
default:
exit(EXIT_FAILURE);
}
}
}
int main(int argc, char **argv) {
// set your bmodel path here
printf("Demo for QwenChat in BM1684X\n");
std::string model_path;
std::string tokenizer_path;
std::vector<int> devices = {0};
processArguments(argc, argv, model_path, tokenizer_path, devices);
if (model_path.empty()) {
Usage();
exit(EXIT_FAILURE);
}
QwenChat qwen;
printf("Init Environment ...\n");
qwen.init(devices, model_path, tokenizer_path);
printf("==========================\n");
qwen.chat();
qwen.deinit();
return 0;
}